Transformations and anticipative equations for Poisson processes. (Transformations et équations anticipantes pour les processus de Poisson.) (French) Zbl 0856.60059

Summary: We prove the existence and uniqueness of a solution for stochastic anticipative equations driven by a point Poisson process. For a particular class of linear equations, the solution may be interpreted as the Radon-Nikodým density of an anticipative transformation of the Poisson process.


60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
Full Text: DOI Numdam EuDML


[1] Buckdahn, R., Anticipative Girsanov transformations and Skorohod stochastic differential equations, Memoirs Amer. Math. Soc.111 (1994), Number 533. · Zbl 0849.60053
[2] Feyel, D., Sur la méthode de Picard (EDO et EDS), dans,Séminaire de Probabilités XXI, 1247Springer, 1987. · Zbl 0629.60065
[3] León, J.A., Ruiz de Chávez, J.et Tudor, C., Anticipating semilinear stochastic equations on the Poisson space, à paraître. · Zbl 0923.60069
[4] Nualart, D., The Malliavin calculus and related topics, Probab. and Applic., Springer, 1995. · Zbl 0837.60050
[5] Ocone, D. et Pardoux, E., A generalized Ito-Ventzell formula, Application to a class of anticipating stochastic differential equations, Ann. Institut H. Poincaré, Probab. Stat.25 (1989), 139-72. · Zbl 0674.60057
[6] Picard, J., Formules de dualité sur l’espace de Poisson, Ann. Institut H. Poincaré, Probab. Stat., à paraître. · Zbl 0859.60045
[7] Privault, N., Linear Skorohod stochastic differential equations on Poisson space, à paraître. · Zbl 0847.60046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.