zbMATH — the first resource for mathematics

A consistent model selection procedure for Markov random fields based on penalized pseudolikelihood. (English) Zbl 0856.62082
Summary: Motivated by applications in texture synthesis, we propose a model selection procedure for Markov random fields based on penalized pseudo-likelihood. The procedure is shown to be consistent for choosing the true model, even for Gibbs random fields with phase transitions. As a by-product, rates for the restricted mean-square error and moderate deviation probabilities are derived for the maximum pseudolikelihood estimator. Some simulation results are presented for the selection procedure.

62M40 Random fields; image analysis
62F12 Asymptotic properties of parametric estimators
68U10 Computing methodologies for image processing
Full Text: DOI
[1] AKAIKE, H. 1974. A new look at statistical model identification. IEEE Trans. Automat. Control 10 716 723. Z. · Zbl 0314.62039
[2] AKAIKE, H. 1978. A Bayesian analysis of the minimum AIC procedure. Ann. Inst. Statist. Math. 30 9 14.Z. BARNDORFF-NIELSEN, O. 1978. Information and Exponential Families in Statistical Theory. Wiley, New York. Z. · Zbl 0441.62007
[3] BESAG, J. 1974. Spatial interaction and the statistical analysis of lattice sy stems. J. Roy. Statist. Soc. Ser. B 6 192 236. Z. JSTOR: · Zbl 0327.60067
[4] BROWN, L. D. 1986. Fundamentals of Statistical Exponential Families with Applications in Statistical Decision Theory. IMS, Hay ward, CA. Z. · Zbl 0685.62002
[5] COMETS, F. 1992. On consistency of a class of estimators for exponential families of Markov ┼Ľandom fields on the lattice. Ann. Statist. 20 455 468. Z. · Zbl 0787.62100
[6] CROSS, G. and JAIN, A. 1983. Markov random field texture models. IEEE Transactions on Pattern Analy sis and Machine Intelligence 5 25 39. Z.
[7] GEMAN, D. 1991. Random Fields and Inverse Problems in Imaging. Lecture Notes in Math. 1427 113 193. Springer, New York. Z. · Zbl 0718.60119
[8] GEMAN, S. and GEMAN, D. 1984. Stochastic relaxation, Gibbs distributions, and Bayesian restoration of images. IEEE Transactions on Pattern Analy sis and Machine Intelligence 6 721 741. Z. · Zbl 0573.62030
[9] GEMAN, S. and C. GRAFFIGNE 1986. Markov random field image models and their applications to computer vision. Proceedings of the International Congress of Mathematicians 1496 1517. Berkeley, CA. Z. · Zbl 0665.68067
[10] GEORGII, H. O. 1988. Gibbs Measures and Phase Transitions. de Gruy ter, Berlin. Z. · Zbl 0657.60122
[11] GEy ER, C. J. and THOMPSON, E. A. 1992. Constrained Monte Carlo maximum likelihood for dependent data. J. Roy. Statist. Soc. Ser. B 54 657 699. JSTOR:
[12] GIDAS, B. 1988. Consistency of maximum likelihood and maximum pseudo-likelihood estimators for Gibbs distributions. In Stochastic Differential Sy stems, Stochastic Control Z. Theory and Applications W. Fleming and P.-L. Ly ons, eds. 129 146. Springer, New York. Z. · Zbl 0648.62099
[13] GIDAS, B. 1993. Parameter estimation for Gibbs distributions from fully observed data. In Z. Markov Random Fields: Theory and Applications R. Chellappa and A. Jain, eds. 471 498. Academic Press, New York. Z.
[14] HASSNER, M. and SKLANSKY, J. 1980. The use of Markov random fields as models of texture. Computer Graphics and Image Processing 12 357 370. Z.
[15] JI, C. 1990. Sieve estimators for pair-interaction potentials and local characteristics in Gibbs random fields. Technical Report 2037, Dept. Statistics, Univ. North Carolina. Z.
[16] KARR, A. 1991. Statistical models and methods in image analysis: a survey. In Inference for Z. Stochastic Processes I. V. Basawa and N. U. Prabhu, eds.. Dekker, New York. Z. · Zbl 0733.62104
[17] KASHy AP, R. and CHELLAPPA, R. 1983. Estimation and choice of neighbors in spatial interaction models of images. IEEE Trans. Inform. Theory 29 60 72. Z. · Zbl 0507.62082
[18] KUNSCH, H., GEMAN, S. and KEHAGIAS, A. 1995. Hidden Markov random fields. Ann. Appl. \" Probab. 5 577 602. Z. · Zbl 0842.60046
[19] RIPLEY, B. D. 1981. Spatial Statistics. Wiley, New York. Z. · Zbl 0583.62087
[20] RISSANEN, J. 1984. Stochastic complexity. J. Roy. Statist. Soc. Ser. B 49 223 239. Z. JSTOR: · Zbl 0654.62008
[21] ROSENFELD, A. 1993. Image modeling during the 1980’s: a brief overview. In Markov Random Z. Fields: Theory and Applications R. Chellappa and A. Jain, eds.. Academic Press, New York. Z.
[22] RUBIN, H. and SETHURAMAN, J. 1965. Probabilities of moderate deviations. Sankhy a Ser. A 27 325 346. Z. · Zbl 0178.53802
[23] SCHWARZ, G. 1978. Estimating the dimension of a model. Ann. Statist. 6 461 464. Z. · Zbl 0379.62005
[24] SEy MOUR, L. 1993. Parameter estimation and model selection in image analysis using Gibbs Markov random fields. Ph.D. dissertation, Dept. Statistics, Univ. North Carolina. Z.
[25] SEy MOUR, L. and JI, C. 1996. Approximate Bay es model selection criteria for Markov random fields. J. Statist. Plann. Inference 51 75 97. Z. · Zbl 0851.62067
[26] SMITH, K. and MILLER, M. 1990. A Bayesian approach incorporating Rissanen complexity for learning Markov random field texture models. Proceedings of the 15th International Conference on Acoustics, Speech, and Signal Processing 4 2317 2320. Z.
[27] WOODROOFE, M. 1982. On model selection and the arcsine laws. Ann. Statist. 10 1182 1194. · Zbl 0507.62037
[28] CHAPEL HILL, NORTH CAROLINA 27599-3260 ATHENS, GEORGIA 30602-1952 E-MAIL: cji@stat.unc.edu E-MAIL: sey mour@rolf.stat.uga.edu
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.