zbMATH — the first resource for mathematics

Admissible observation operators. Semigroup criteria of admissibility. (English) Zbl 0856.93021
Let \(\{S(t)\}_{t\geq0}\) be a strongly continuous semigroup of linear bounded operators over a Hilbert space \(H\), with generator \(A\). Let \(C\in{\mathcal L}(D_A,Y)\) – called observation operator – where \(D_A\) is the domain of \(A\) and \(Y\) is another Hilbert space.
This paper studies admissible observation operators, i.e., those operators \(C\) for which there exists \(\gamma>0\) such that: \[ \int^\infty_0|CS(t)u_0|^2_Y dt\leq\gamma|u_0|^2_H,\qquad \forall\;u_0\in D_A. \] Necessary and sufficient conditions for admissibility are obtained via conditions for a certain operator to generate a uniformly bounded semigroup. Moreover, this semigroup is also weakly stable. Semigroup criteria of admissibility of exact observable systems are then derived. It turns out that admissibility and exact observability are equivalent to a certain operator to be similar to the generator of an isometric semigroup.

93B28 Operator-theoretic methods
93B07 Observability
Full Text: DOI
[1] J.L.B.Cooper,One-parameter semigroups of isometric operators, Annals of Mathematics,48 (1947), 827-842. · Zbl 0029.14101 · doi:10.2307/1969382
[2] E.B.Davies,One-Parameter Semigroups, London: Academic Press, 1980. · Zbl 0457.47030
[3] P.Grabowski,On the spectral?Lyapunov approach to parametric optimization of distributed?parameter systems, IMA Journal of Mathematical Control and Information,7 (1990), 317-338. · Zbl 0721.49006 · doi:10.1093/imamci/7.4.317
[4] P.Grabowski,Admissibility of observation functionals, To appear in International Journal of Control (1995). · Zbl 0837.93005
[5] P.Grabowski, F.M.Callier,Admissible observation operators. Duality of observation and control, Research ReportNo. 94-27 (1994), Department of Mathematics, FUNDP, Namur, Belgium.
[6] W.Helton,Systems with infinite-dimensional state space: The Hilbert space approach, Proceedings of the IEEE64 (1976), 145-160. · doi:10.1109/PROC.1976.10076
[7] F.Huang,Strong asymptotic stability of linear dynamical systems in Banach spaces, Journal of Differential Equations104 (1993), 307-324. · Zbl 0777.34040 · doi:10.1006/jdeq.1993.1074
[8] N.Levan,The left shift semigroup approach to stability of distributed systems, Journal of Mathematical Analysis and Applications152 (1990), 354-367. · Zbl 0783.47055 · doi:10.1016/0022-247X(90)90070-V
[9] N.Levan,Stabilizability of two classes of contraction semigroups, Journal of Optimization Theory76 (1993), 111-130. · Zbl 0793.47044 · doi:10.1007/BF00952824
[10] J.-Cl.Louis, D.Wexler,The Hilbert space regulator problem and operator Riccati equation under stabilizability, Annales de la Société Scientifique de Bruxelles105 (1991), 137-165. · Zbl 0771.47026
[11] Yu.I.Lyubich,Conservative operators, Uspekhi Matematicheskikh Nauk20 (1965), 221-225 (in Russian).
[12] A.Pazy,Semigroups of Linear Operators and Applications to PDEs, Heidelberg: Springer, 1983. · Zbl 0516.47023
[13] R.S.Phillips,Dissipative operators and hyperbolic systems of partial differential equations, Transactions of the AMS90 (1959), 193-254. · Zbl 0093.10001 · doi:10.1090/S0002-9947-1959-0104919-1
[14] G.Popescu,On similarity of operators to isometries, Michigan Mathematical Journal39 (1992), 385-393. · Zbl 0784.47031 · doi:10.1307/mmj/1029004593
[15] D.L.Russell, G.Weiss,A general necessary condition for exact observability, To appear in SIAM Jornal of Control and Optimization (1994). · Zbl 0795.93023
[16] J.Weidmann,Linear Operators in Hilbert Spaces, Heidelberg: Springer, 1980. · Zbl 0434.47001
[17] G.Weiss,Admissibility of input elements for diagonal semigroup on l 2, Systems and Control Letters10 (1988), 79-82. · Zbl 0634.93046 · doi:10.1016/0167-6911(88)90044-8
[18] G.Weiss,Admissibility observation operators for linear semigroups, Israel Journal of Mathematics65 (1989), 17-43. · Zbl 0696.47040 · doi:10.1007/BF02788172
[19] G.Weiss,Two conjectures on the admissibility of control operators, In eds.:W.Desch,F.Kappel,Estimation and Control of Distributed Parameter Systems,ISNM.100, 367-378, Basel: Birkhäuser, 1991. · Zbl 0763.93041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.