zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The central two-point connection problem of Heun’s class of differential equations. (English. Russian original) Zbl 0857.34014
Summary: Boundary-value problems of ordinary, linear, homogeneous second order differential equations belong to the most important and thus well-investigated problems in mathematical physics. This statement is true only as long as irregular singularities of the differential equation at hand are not involved. If singular points of irregular type enter the problem one will hardly find a systematic investigation of such a topic from a practical point of view. This paper is devoted to an outline of an approach to boundary-value problems of the class of Heun’s differential equations when irregular singularities may be located at the endpoints of the relevant interval. We present an approach to the central two-point connection problem for all of these equations in a quite uniform manner. The essential point is an investigation of the Birkhoff sets of irreducible difference equations, which, on the one hand, gives a detailed insight into the structure of the singularities of the underlying differential equation and, on the other hand, yields the basis of quite convenient algorithms for numerical investigations of the boundary values.

34M40Stokes phenomena and connection problems (ODE in the complex domain)
34M55Painlevé and other special equations; classification, hierarchies
34B05Linear boundary value problems for ODE
Full Text: DOI
[1] L. Bieberbach,Theorie gewöhnlicher Differentialgleichungen (second edition), Springer, Berlin (1965). · Zbl 0124.04603
[2] J. C. P. Miller,Proc. Cambridge Philos. Soc.,48, 428 (1952). · doi:10.1017/S0305004100027821
[3] E. L. Ince,Ordinary Differential Equations, Dover Publications, New York (1956). · Zbl 0063.02971
[4] Heun Equation, ed. A. Ronveaux, Oxford University Press, Oxford (in press).
[5] J. Meixner and F. W. Schäfke,Mathieu Funktionen und Sphäroidfunktionen, Springer, Berlin (1953).
[6] I. V. Komarov, L. I. Ponomarev, and S. Yu. Slavyanov,Spheroidal and Coulomb Spheroidal Functions [in Russian], Nauka, Moscow (1976) (English translation is in preparation by Oxford University Press).
[7] R. Mennicken,Arch. Math.,16, 452 (1965). · Zbl 0134.06402 · doi:10.1007/BF01220056
[8] D. Schmidt,Thesis, Köln (1970).
[9] D. Schmidt,Arch. Rat. Mech. Anal.,31(4), 322 (1968). · Zbl 0185.18202 · doi:10.1007/BF00253711
[10] R. Schäfke,SIAM J. Math. Anal.,15(2), 253 (1984). · Zbl 0536.34001 · doi:10.1137/0515021
[11] Centennial Workshop on Heun’s Equation ? Theory and Applications, Sept. 3-8, 1989 Schloss Ringberg (Rottach-Egern), ed. A. Seeger and W. Lay, Max-Planck-Institut für Metallforschung Institut für Physik, Stuttgart (1990).
[12] S. Chandrasekhar,The Mathematical Theory of Black Holes, Oxford University Press, Oxford (1983). · Zbl 0511.53076
[13] A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi,Higher Transcendental Functions, Vol. 3, McGraw-Hill, New York (1955). · Zbl 0064.06302
[14] G. Jaffé,Z. Phys. B,87, 535 (1933).
[15] O. Perron,J. Reine und Angew. Math.,137(1), 6 (1909).
[16] O. Perron,Acta Math.,34, 109 (1910). · doi:10.1007/BF02393125
[17] J. Wimp,Computations with Recurrence Relations, Pitman Advanced Publishing Program, Boston, (1984). · Zbl 0543.65084
[18] C. R. Adams,Trans. Am. Math. Soc.,30, 507 (1928). · doi:10.1090/S0002-9947-1928-1501443-6
[19] G. D. Birkhoff,Acta Math.,54, 205 (1930). · Zbl 56.0402.01 · doi:10.1007/BF02547522
[20] N. H. Abel,J. Reine und Angew. Math.,1, 311 (1826); cited in K. Knopp:Theorie und Anwendungen der unendlichen Reihen (fifth edition), Springer, Berlin (1964), p. 179. · Zbl 001.0031cj · doi:10.1515/crll.1826.1.311
[21] K. Weierstrass,J. Reine und Angew. Math.,51, 29 (1856);Werke I, p. 185; cited in [23].
[22] O. Stolz,Z. Math. Phys.,20, 369 (1875); cited in [23].
[23] K. Knopp,Theorie und Anwendungen der unendlichen Reihen (fifth edition), Springer, Berlin (1964). · Zbl 0124.28302