×

Nonlinear potentials and quasilinear PDE’s. (English) Zbl 0857.35046

Král, Josef (ed.) et al., Potential theory – ICPT ’94. Proceedings of the international conference, Kouty, Czech Republic, August 13–20, 1994. Berlin: deGruyter. 103-128 (1996).
Summary: Quasilinear elliptic equations of type \(-\text{div } A(x,u,\nabla u)+B(x,u,\nabla u)=\mu\) are studied. Estimates of subsolutions and supersolutions in terms of integrals \[ \int^R_0 \biggl({{\text{cap}_p (B(z,r)\setminus \Omega,r)}\over{r^{n-p}}} \biggr)^{1/(p-1)} {dr\over r} \] (Wiener type conditions) and \(\int^R_0 ({{\mu(B(x,r))} \over{r^{n-p}}})^{1/(p-1)} {dr\over r}\) are discussed.
For the entire collection see [Zbl 0844.00023].

MSC:

35J65 Nonlinear boundary value problems for linear elliptic equations
31C15 Potentials and capacities on other spaces
35J70 Degenerate elliptic equations
35A35 Theoretical approximation in context of PDEs
PDF BibTeX XML Cite