×

zbMATH — the first resource for mathematics

Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data. (English) Zbl 0857.35126
Summary: We consider the differential problem \[ A(u)=\mu\quad\text{in }\Omega, \qquad u=0\quad\text{on }\partial\Omega,\tag{\(*\)} \] where \(\Omega\) is a bounded, open subset of \(\mathbb{R}^N\), \(N\geq 2\), \(A\) is a monotone operator acting on \(W_0^{1,p}(\Omega)\), \(p>1\), and \(\mu\) is a Radon measure on \(\Omega\) that does not charge the sets of zero \(p\)-capacity. We prove a decomposition theorem for these measures (more precisely, as the sum of a function in \(L^1(\Omega)\) and of a measure in \(W^{-1,p'}(\Omega)\)), and an existence and uniqueness result for the so-called entropy solutions of \((*)\).

MSC:
35R05 PDEs with low regular coefficients and/or low regular data
47H05 Monotone operators and generalizations
35J60 Nonlinear elliptic equations
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] Benilan, P.; Boccardo, L.; Gallouët, T.; Gariepy, R.; Pierre, M.; Vazquez, J. L., An L^{1} theory of existence and uniqueness of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa, Vol. 22, n. 2, 240-273, (1995)
[2] Boccardo, L.; Gallouët, T., Nonlinear elliptic and parabolic equations involving measure data, J. Funct. Anal., Vol. 87, 149-169, (1989) · Zbl 0707.35060
[3] Boccardo, L.; Gallouët, T., Nonlinear elliptic equations with right hand side measures, Comm. Partial Differential Equations, Vol. 17, n. 3&4, 641-655, (1992) · Zbl 0812.35043
[4] Brezis, H., Some variational problems of the Thomas-Fermi type, (Cottle; Gianessi; Lions, Variational inequalities and complementarity problems, (1980), Wiley New York), 53-73
[5] Brezis, H.; Strauss, W., Semi-linear second-order elliptic equations in L^{1}, J. Math. Soc. Japan, Vol. 25, n. 4, 565-590, (1973) · Zbl 0278.35041
[6] Dall’Aglio, A., Approximated solutions of equations with L^{1} data. application to the H-convergence of parabolic quasi-linear equations, Ann. Mat. Pura Appl., Vol. 170, 207-240, (1996) · Zbl 0869.35050
[7] Maso, G. Dal, On the integral representation of certain local functionals, Ricerche Mat., Vol. 22, 85-113, (1983) · Zbl 0543.49001
[8] G. Dal Maso, Personal communication.
[9] Fukushima, M.; Sato, K.; Taniguchi, S., On the closable part of pre-Dirichlet forms and the fine supports of underlying measures, Osaka J. Math., Vol. 28, 517-535, (1991) · Zbl 0756.60071
[10] Gallouët, T.; Morel, J. M., Resolution of a semilinear equation in L^{1}, Proc. Roy. Soc. Edinburgh, Vol. 96, 275-288, (1984) · Zbl 0573.35030
[11] Leray, J.; Lions, J. L., Quelques résultats de višik sur LES problèmes elliptiques semi-linéaires par LES méthodes de minty et Browder, Bull. Soc. Math. France, Vol. 93, 97-107, (1965) · Zbl 0132.10502
[12] Prignet, A., Remarks on existence and uniqueness of solutions of elliptic problems with right-hand side measures, Rend. Mat., Vol. 15, 321-337, (1995) · Zbl 0843.35127
[13] Serrin, J., Pathological solutions of elliptic differential equations, Ann. Scuola Norm. Sup. Pisa, Vol. 18, 385-387, (1964) · Zbl 0142.37601
[14] Stampacchia, G., Le problème de Dirichlet pour LES équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier, (Grenoble), Vol. 15, n. 1, 189-258, (1965) · Zbl 0151.15401
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.