×

The rigid analytic period mapping, Lubin-Tate space, and stable homotopy theory. (English) Zbl 0857.55003

Summary: The geometry of the Lubin-Tate space of deformations of a formal group is studied via an étale, rigid analytic map from the deformation space to projective space. This leads to a simple description of the equivariant canonical bundle of the deformation space which, in turn, yields a formula for the dualizing complex in stable homotopy theory.

MSC:

55N22 Bordism and cobordism theories and formal group laws in algebraic topology
14L05 Formal groups, \(p\)-divisible groups
14F30 \(p\)-adic cohomology, crystalline cohomology
55P42 Stable homotopy theory, spectra
11S31 Class field theory; \(p\)-adic formal groups
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] J. F. Adams, Stable homotopy and generalised homology, University of Chicago Press, Chicago, Ill.-London, 1974. Chicago Lectures in Mathematics. · Zbl 0309.55016
[2] Ethan S. Devinatz and Michael J. Hopkins, The action of the Morava stabilizer group on the Lubin-Tate moduli space of lifts, Amer. J. Math. 117 (1995), no. 3, 669 – 710. · Zbl 0842.14034 · doi:10.2307/2375086
[3] V. G. Drinfel\(^{\prime}\)d, Elliptic modules, Mat. Sb. (N.S.) 94(136) (1974), 594 – 627, 656 (Russian).
[4] Yasushi Fujiwara, On divisibilities of special values of real analytic Eisenstein series, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 35 (1988), no. 2, 393 – 410. · Zbl 0669.10049
[5] Phillip A. Griffiths, Periods of integrals on algebraic manifolds: Summary of main results and discussion of open problems, Bull. Amer. Math. Soc. 76 (1970), 228 – 296. · Zbl 0214.19802
[6] Benedict H. Gross, On canonical and quasicanonical liftings, Invent. Math. 84 (1986), no. 2, 321 – 326. · Zbl 0597.14044 · doi:10.1007/BF01388810
[7] M. J. Hopkins and B. H. Gross, Equivariant vector bundles on the Lubin-Tate moduli space, Topology and representation theory (Evanston, IL, 1992) Contemp. Math., vol. 158, Amer. Math. Soc., Providence, RI, 1994, pp. 23 – 88. · Zbl 0807.14037 · doi:10.1090/conm/158/01453
[8] A. Grothendieck, Groupes de Barsotti-Tate et cristaux, Actes du Congrès International des Mathématiciens (Nice, 1970) Gauthier-Villars, Paris, 1971, pp. 431 – 436 (French). · Zbl 0244.14016
[9] Robin Hartshorne, Residues and duality, Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64. With an appendix by P. Deligne. Lecture Notes in Mathematics, No. 20, Springer-Verlag, Berlin-New York, 1966. · Zbl 0212.26101
[10] Michael J. Hopkins, Global methods in homotopy theory, Homotopy theory (Durham, 1985) London Math. Soc. Lecture Note Ser., vol. 117, Cambridge Univ. Press, Cambridge, 1987, pp. 73 – 96. · Zbl 0657.55008
[11] M. J. Hopkins and D. C. Ravenel, The chromatic tower (in preparation).
[12] Michael J. Hopkins and Jeffrey H. Smith, Nilpotence and stable homotopy theory. II, Ann. of Math. (2) 148 (1998), no. 1, 1 – 49. · Zbl 0927.55015 · doi:10.2307/120991
[13] Luc Illusie, Déformations de groupes de Barsotti-Tate (d’après A. Grothendieck), Astérisque 127 (1985), 151 – 198 (French). Seminar on arithmetic bundles: the Mordell conjecture (Paris, 1983/84). · Zbl 1182.14050
[14] Nicholas Katz, Travaux de Dwork, Séminaire Bourbaki, 24ème année (1971/1972), Exp. No. 409, Springer, Berlin, 1973, pp. 167 – 200. Lecture Notes in Math., Vol. 317 (French, with English summary).
[15] Nicholas M. Katz, \?-adic \?-functions, Serre-Tate local moduli, and ratios of solutions of differential equations, Proceedings of the International Congress of Mathematicians (Helsinki, 1978), Acad. Sci. Fennica, Helsinki, 1980, pp. 365 – 371.
[16] Nicholas M. Katz, Crystalline cohomology, Dieudonné modules, and Jacobi sums, Automorphic forms, representation theory and arithmetic (Bombay, 1979), Tata Inst. Fund. Res. Studies in Math., vol. 10, Tata Inst. Fundamental Res., Bombay, 1981, pp. 165 – 246.
[17] Nicholas M. Katz, Divisibilities, congruences, and Cartier duality, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), no. 3, 667 – 678 (1982). · Zbl 0559.14032
[18] Jonathan Lubin and John Tate, Formal moduli for one-parameter formal Lie groups, Bull. Soc. Math. France 94 (1966), 49 – 59. · Zbl 0156.04105
[19] B. Mazur and William Messing, Universal extensions and one dimensional crystalline cohomology, Lecture Notes in Mathematics, Vol. 370, Springer-Verlag, Berlin-New York, 1974. · Zbl 0301.14016
[20] Haynes R. Miller, Douglas C. Ravenel, and W. Stephen Wilson, Periodic phenomena in the Adams-Novikov spectral sequence, Ann. of Math. (2) 106 (1977), no. 3, 469 – 516. · Zbl 0374.55022 · doi:10.2307/1971064
[21] Jack Morava, Noetherian localisations of categories of cobordism comodules, Ann. of Math. (2) 121 (1985), no. 1, 1 – 39. · Zbl 0572.55005 · doi:10.2307/1971192
[22] Daniel Quillen, On the formal group laws of unoriented and complex cobordism theory, Bull. Amer. Math. Soc. 75 (1969), 1293 – 1298. · Zbl 0199.26705
[23] Douglas C. Ravenel, Localization with respect to certain periodic homology theories, Amer. J. Math. 106 (1984), no. 2, 351 – 414. · Zbl 0586.55003 · doi:10.2307/2374308
[24] Douglas C. Ravenel, Complex cobordism and stable homotopy groups of spheres, Pure and Applied Mathematics, vol. 121, Academic Press, Inc., Orlando, FL, 1986. · Zbl 0608.55001
[25] Jiu-Kang Yu, On the moduli of quasi-canonical liftings, Compositio Math. 96 (1995), no. 3, 293 – 321. · Zbl 0866.14029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.