×

zbMATH — the first resource for mathematics

Singular solutions for a class of Grusin type operators. (English) Zbl 0858.35025
The authors construct singular solutions for the following family of Grushin operators, given, for \(k\) an odd integer and \(\lambda\in\mathbb{C}\), by \[ P_\lambda= \partial^2_x+ x^{2k}\partial^2_y+ i(\lambda+k) x^{k-1}\partial_y, \] in \(\mathbb{R}^2\). This is a simple model of PDE with double characteristics and with complex lower order terms. This model was introduced by A. Gilioli and F. Trèves [Am. J. Math. 96, 367-385 (1974; Zbl 0308.35022)]. In continuation of this paper the authors present two methods of construction of singular solutions when \(\lambda=2j(k+1)\) or \(\lambda=2j(k+1)+2\) for some \(j\in\mathbb{N}\). One is by certain Fourier integrals with symbols expressed in terms of the solutions of the operator \[ Q_\lambda:= -\partial^2_x+x^{2k}+ (\lambda+k)x^{k-1}. \] The other is by the method of concatenations of Gilioli and Treves.
Reviewer: B.Helffer (Orsay)

MSC:
35H10 Hypoelliptic equations
35A20 Analyticity in context of PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Louis Boutet de Monvel and François Trèves, On a class of pseudodifferential operators with double characteristics, Invent. Math. 24 (1974), 1 – 34. · Zbl 0281.35083 · doi:10.1007/BF01418785 · doi.org
[2] Antonio Gilioli, A class of second-order evolution equations with double characteristics, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 3 (1976), no. 2, 187 – 229. · Zbl 0327.35018
[3] Antonio Gilioli and François Trèves, An example in the solvability theory of linear PDE’s, Amer. J. Math. 96 (1974), 367 – 385. · Zbl 0308.35022 · doi:10.2307/2373639 · doi.org
[4] V. V. Grušin, A certain class of hypoelliptic operators, Mat. Sb. (N.S.) 83 (125) (1970), 456 – 473 (Russian).
[5] Lars Hörmander, A class of hypoelliptic pseudodifferential operators with double characteristics, Math. Ann. 217 (1975), no. 2, 165 – 188. · Zbl 0306.35032 · doi:10.1007/BF01351297 · doi.org
[6] Lars Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147 – 171. · Zbl 0156.10701 · doi:10.1007/BF02392081 · doi.org
[7] Lars Hörmander, The analysis of linear partial differential operators. III, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 274, Springer-Verlag, Berlin, 1985. Pseudodifferential operators. Lars Hörmander, The analysis of linear partial differential operators. IV, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 275, Springer-Verlag, Berlin, 1985. Fourier integral operators.
[8] J. J. Kohn, Pseudo-differential operators and hypoellipticity, Partial differential equations (Proc. Sympos. Pure Math., Vol. XXIII, Univ. California, Berkeley, Calif., 1971) Amer. Math. Soc., Providence, R.I., 1973, pp. 61 – 69.
[9] O. A. Oleĭnik and E. V. Radkevič, Second order equations with nonnegative characteristic form, Plenum Press, New York-London, 1973. Translated from the Russian by Paul C. Fife.
[10] Linda Preiss Rothschild and E. M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math. 137 (1976), no. 3-4, 247 – 320. · Zbl 0346.35030 · doi:10.1007/BF02392419 · doi.org
[11] Gabor Szegö, Orthogonal polynomials, American Mathematical Society Colloquium Publications, Vol. 23. Revised ed, American Mathematical Society, Providence, R.I., 1959. · Zbl 0305.42011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.