Bruner, Robert; Greenlees, John The Bredon-Löffler conjecture. (English) Zbl 0858.55012 Exp. Math. 4, No. 4, 289-297 (1995). Summary: We give a brief exposition of results of Bredon and others on passage to fixed points from stable \(C_2\) equivariant homotopy (where \(C_2\) is the group of order two) and its relation to Mahowald’s root invariant. In particular we give Bredon’s easy equivariant proof that the root invariant doubles the stem; the conjecture of the title is equivalent to the Mahowald-Ravenel conjecture that the root invariant never more than triples the stem. Our main result is to verify by computation that the algebraic analogue of this holds in an extensive range: this improves on results of M. E. Mahowald and P. Shick [Contemp. Math. 19, 227-231 (1983; Zbl 0528.55012)]. Cited in 1 ReviewCited in 11 Documents MSC: 55Q91 Equivariant homotopy groups Keywords:stable equivariant homotopy; Mahowald’s root Citations:Zbl 0528.55012 × Cite Format Result Cite Review PDF Full Text: DOI EuDML EMIS References: [1] Adams J. F., Algebraic topology pp 483– (1984) [2] Bredon G. E., Bull. Amer. Math. Soc. 73 pp 269– (1967) · Zbl 0152.21803 · doi:10.1090/S0002-9904-1967-11713-0 [3] Bredon, G. E. ”Equivariant homotopy”. Proceedings of the Conference on Transformation Groups. 1967, New Orleans. Edited by: Paul Mostert, S. pp.281–292. New York: Springer. [Bredon 1967b] [4] Bruner R. R., Algebraic topology pp 71– (1993) [5] Greenlees J. P. C., Trans. Amer. Math. Soc. 310 pp 199– (1988) [6] Greenlees J. P. C., Proc. Edinburgh Math. Soc. 35 pp 473– (1992) · Zbl 0814.55006 · doi:10.1017/S0013091500005757 [7] Greenlees J. P. C., Mem. Amer. Math. Soc. 543 (1995) [8] Iriye K., J. Math. Kyoto U. 29 pp 159– (1989) · Zbl 0706.55011 · doi:10.1215/kjm/1250520312 [9] Jones J. D. S., Bull. London Math. Soc. 17 pp 479– (1985) · Zbl 0585.55012 · doi:10.1112/blms/17.5.479 [10] Land weber P. S., Ann. Math. 89 pp 1250– (1969) [11] Lewis L. G., Equivariant stable homotopy theory (1986) · Zbl 0611.55001 · doi:10.1007/BFb0075778 [12] Lin W. H., Math. Proc. Camb. Phil. Soc. 87 pp 449– (1980) · Zbl 0455.55007 · doi:10.1017/S0305004100056887 [13] Lin W. H., Math. Proc. Camb. Phil. Soc. 87 pp 459– (1980) · Zbl 0462.55007 · doi:10.1017/S0305004100056899 [14] Mahowald M. E., Topology 32 pp 865– (1993) · Zbl 0796.55008 · doi:10.1016/0040-9383(93)90055-Z [15] Mahowald M. E., Contemp. Math. 19 pp 227– (1983) · Zbl 0528.55012 · doi:10.1090/conm/019/711054 [16] Miller H. R., Homotopy theory and related topics pp 210– (1990) · doi:10.1007/BFb0083705 [17] Schultz R., Contemp. Math. 36 pp 513– (1985) · doi:10.1090/conm/036/780979 [18] Shick P., Trans. Amer. Math. Soc. 301 pp 227– (1987) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.