Laver, Richard Braid group actions on left distributive structures, and well orderings in the braid groups. (English) Zbl 0859.20029 J. Pure Appl. Algebra 108, No. 1, 81-98 (1996). Let \(B_n\) be the Artin braid group with standard generators \(\sigma_1,\dots,\sigma_{n-1}\), and set \(B_\infty=\varinjlim B_n\). P. Dehornoy [Trans. Am. Math. Soc. 345, No. 1, 115-150 (1994; Zbl 0837.20048)] introduced a linear ordering \(<\) in \(B_\infty\) characterized by the property that \(\alpha<\beta\) if and only if \(\alpha^{-1}\beta\) can be represented as a nonempty braid word \(w=\sigma^{\pm 1}_{i_1}\dots\sigma^{\pm1}_{i_m}\) such that the generator with smallest subscript appearing in \(w\) occurs only positively. In this paper, the author proves that the rule \(x^{\sigma_i}_i=x_{i-1}\), \(x^{\sigma_i}_{i-1}=x_{i-1}x_i\), \(x^{\sigma_i}_j=x_j\) (\(j\neq i,i-1\)) defines a “partial action” of \(B_\infty\) on a certain subset of the “decreasing division forms” in the free left distributive algebra on \(\{x_0,x_1,x_2,\dots\}\). As consequences, the linear order \(<\) of \(B_\infty\) turns out to extend the partial ordering of E. A. Elrifai and H. R. Morton [Q. J. Math., Oxf. II. Ser. 45, No. 180, 479-497 (1994; Zbl 0839.20051)] and to give a well ordering on the set \(B^+_n\) of positive braids (where all generators occur only positively) for any fixed \(n\). Reviewer: H.Nakamura (Princeton) Cited in 1 ReviewCited in 17 Documents MSC: 20F36 Braid groups; Artin groups 06A05 Total orders 08A50 Word problems (aspects of algebraic structures) 17A50 Free nonassociative algebras 17A30 Nonassociative algebras satisfying other identities 20N02 Sets with a single binary operation (groupoids) Keywords:Artin braid groups; generators; free left distributive algebras; linear orders; partial orderings; well orderings; positive braids Citations:Zbl 0837.20048; Zbl 0839.20051 PDF BibTeX XML Cite \textit{R. Laver}, J. Pure Appl. Algebra 108, No. 1, 81--98 (1996; Zbl 0859.20029) Full Text: DOI OpenURL References: [1] Artin, E., Theorie der Zöpfe, Abh. Math. Sem. Univ. Hamburg, 4, 47-72 (1925) · JFM 51.0450.01 [2] Brieskorn, E., Automorphic sets and braids and singularities, (Braids, Contemporary Math, Vol. 78 (1988), American Math. Soc), 45-117 · Zbl 0716.20017 [3] Burckel, S., (Thesis (1994), Université de Caen) [4] Dehornoy, P., Free distributive groupoids, J. Pure Appl. Algebra, 61, 123-146 (1989) · Zbl 0686.20041 [5] Dehornoy, P., Sur la structure des gerbes libres, Comptes-rendu de l’Acad. des Sciences de Paris, 309-1, 143-148 (1989) · Zbl 0688.20038 [6] Dehornoy, P., Braid groups and left distributive structures, Trans. Amer. Math. Soc., 345, 115-150 (1994) · Zbl 0837.20048 [7] Dehornoy, P., A canonical ordering for free left distributive magmas, (Proc. Amer. Math. Soc., 122 (1994)), 31-36 · Zbl 0806.06017 [8] Dougherty, R., Critical points in an algebra of elementary embeddings, Ann. Pure Appl. Logic, 65, 211-241 (1993) · Zbl 0791.03028 [10] Drapal, A., Homomorphisms of primitive left distributive groupoids, Comm. Algebra, 22-7, 2579-2592 (1994) · Zbl 0818.20087 [11] Drapal, A., Persistence of cyclic left distributive algebras, J. Pure. Appl. Algebra, 105, 137-165 (1995) · Zbl 0849.20049 [12] Elrifai, E. A.; Morton, H. R., Algorithms for positive braids, Quart. J. Math. Oxford, 45, 2, 479-497 (1994) · Zbl 0839.20051 [13] Fenn, R.; Rourke, C., Racks and links in codimension 2, J. Knot Theory and its ramifications, 343-406 (1992) · Zbl 0787.57003 [14] Garside, F. A., The braid group and other groups, Quart. J. Math. Oxford, 20, 2, 235-254 (1969) · Zbl 0194.03303 [15] Higman, G., Ordering by divisibility in abstract algebras, (Proc. London Math. Soc., 2 (1952)), 326-336 · Zbl 0047.03402 [16] Joyce, D., A classifying invariant of knots: the knot quandle, J. Pure Appl. Algebra, 23, 37-65 (1982) · Zbl 0474.57003 [17] Kanamori, A., The Higher Infinite: Large Cardinals in Set Theory from Their Beginnings (1994), Springer: Springer Berlin · Zbl 0813.03034 [18] Kauffman, L., Knots and Physics (1991), World Scientific: World Scientific Singapore, Chapter 1-13 · Zbl 0733.57004 [19] Larue, D., Braid words and irreflexivity, Algebra Universalis, 31, 104-112 (1994) · Zbl 0793.08007 [20] Larue, D., (Thesis (1994), University of Colorado) [21] Laver, R., The left distributive law and the freeness of an algebra of elementary embeddings, Adv. Math., 91, 209-231 (1992) · Zbl 0822.03030 [22] Laver, R., A division algorithm for the free left distributive algebra, (Proc. Helsinki 1990 ASL meeting (1993), Springer: Springer Berlin), 155-162 · Zbl 0809.08004 [23] Laver, R., On the algebra of elementary embeddings of a rank into itself, Adv. Math., 110, 334-346 (1995) · Zbl 0822.03031 [24] Lyndon, R. C.; Schupp, P. E., Combinatorial Group Theory, ((1977), Springer: Springer New York), 157 [25] Martin, D. A., Infinite games, (Proc. International Congress of Mathematicians. Proc. International Congress of Mathematicians, Helsinki (1978)), 73-116 [26] Martin, D. A., Woodin’s proof of PD, (handwritten notes (1985)) [27] Matveev, S., Distributive groupoids in knot theory, Math. USSR-Sb., 73-83 (1982) · Zbl 0523.57006 [28] Steel, J., On the well-foundedness of the Mitchell order, J. Symbolic Logic., 58, 931-940 (1993) · Zbl 0804.03038 [30] Wehrung, F., Gerbes primitives, CRAS Paris, 313, 357-362 (1991) · Zbl 0739.20033 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.