×

zbMATH — the first resource for mathematics

Complex Einstein submanifolds of projective space. (Sous-variétés complexes d’Einstein de l’espace projectif.) (French) Zbl 0859.53029
The author proves that every Einstein-Kähler submanifold of a complex projective space can be extended to a complete submanifold and hence the Einstein constant is a rational number.
Reviewer: K.Ogiue (Tokyo)

MSC:
53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.)
53C40 Global submanifolds
53C55 Global differential geometry of Hermitian and Kählerian manifolds
PDF BibTeX XML Cite
Full Text: DOI Link Numdam EuDML
References:
[1] BESSE (A.L.) . - Einstein manifolds . - Springer, 1987 . MR 88f:53087 | Zbl 0613.53001 · Zbl 0613.53001
[2] SÉMINAIRE PALAISEAU . - Première classe de Chern et courbure de Ricci : preuve de la conjecture de Calabi , Astérisque, Soc. Math. France, Paris, t. 58, 1978 . MR 80j:53064 | Zbl 0397.35028 · Zbl 0397.35028
[3] BOCHNER (S.) . - Curvature in Hermitian metric , Bull. Amer. Math. Soc., t. 53, 1947 , p. 179-195. Article | MR 8,490d | Zbl 0035.10403 · Zbl 0035.10403
[4] BANDO (S.) and MABUCHI (T.) . - Uniqueness of Einstein Kähler metrics modulo connected group actions , Advanced studies in Pure Math., t. 10, 1987 ; Algebraic geometry, Sendai, 1985 . Zbl 0641.53065 · Zbl 0641.53065
[5] CALABI (E.) . - Isometric imbedding of complex manifolds , Ann. of Math., t. 58, 1953 , p. 1-23. MR 15,160c | Zbl 0051.13103 · Zbl 0051.13103
[6] CHEN (B.-Y) and OGIUE (K.) . - A characterization of the complex sphere , Michigan Math. J., t. 21, 1974 , p. 231-232. Article | MR 50 #11096 | Zbl 0295.53029 · Zbl 0295.53029
[7] CHERN (S.S.) . - Einstein hypersurfaces in a Kählerian manifold of constant holomorphic curvature , J. Differential Geom., t. 1, 1967 , p. 21-31. MR 36 #2096 | Zbl 0168.19505 · Zbl 0168.19505
[8] HANO (J.) . - Einstein complete intersections in complex projective space , Math. Ann., t. 216, 1975 , p. 197-208. MR 52 #3586 | Zbl 0306.53047 · Zbl 0306.53047
[9] KOBAYASHI (S.) and OCHIAI (T.) . - Characterizations of complex projective spaces and hyperquadrics , J. Math. Kyoto Univ., t. 13, 1973 , p. 31-47. Article | MR 47 #5293 | Zbl 0261.32013 · Zbl 0261.32013
[10] MATSUYAMA (Y.) . - On a 2-dimensional Einstein Kähler submanifold of a complex space form , Proc. Amer. Math. Soc., t. 95, 1985 , p. 595-603. MR 87b:53077 | Zbl 0536.53023 · Zbl 0536.53023
[11] NISHIKAWA (S.) . - The Gauss map of Kaehler immersions , Tôhoku Math. J., t. 27, 1975 , p. 453-460. Article | MR 56 #9463 | Zbl 0322.53026 · Zbl 0322.53026
[12] OBATA (M.) . - The Gauss map of immersions of riemannian manifolds in spaces of constant curvature , J. Differential Geom., t. 2, 1968 , p. 217-223. MR 38 #2705 | Zbl 0181.49801 · Zbl 0181.49801
[13] OGUIE (K.) . - Differential geometry of Kähler submanifolds , Advances in Maths., t. 13, 1974 , p. 73-114. MR 49 #11444 | Zbl 0275.53035 · Zbl 0275.53035
[14] SERRE (J.-P.) . - Représentations linéaires et espaces homogènes kählériens des groupes de Lie compacts , Séminaire Bourbaki, Exposé n^\circ 100, 1954 ; Benjamin 1966 . Numdam | Zbl 0121.16203 · Zbl 0121.16203
[15] SMYTH (B.) . - Differential geometry of complex hypersurfaces , Ann. of Math., t. 85, 1967 , p. 246-266. MR 34 #6697 | Zbl 0168.19601 · Zbl 0168.19601
[16] TAKEUCHI (M.) . - Homogeneous Kähler submanifolds in complex projective spaces , Japan J. Math., t. 4, 1978 , p. 171-219. MR 80i:32059 | Zbl 0389.53027 · Zbl 0389.53027
[17] TSUKADA (K.) . - Einstein-Kähler submanifolds with codimension 2 in a complex space form , Math. Ann., t. 274, 1986 , p. 503-516. MR 87g:53071 | Zbl 0592.53046 · Zbl 0592.53046
[18] UMEHARA (M.) . - Einstein Kähler submanifolds of a complex linear or hyperbolic space , Tôhoku Math. J., t. 39, 1987 , p. 385-389. Article | MR 89a:53054 | Zbl 0648.53031 · Zbl 0648.53031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.