×

Maximum likelihood methods for a generalized class of log-linear models. (English) Zbl 0859.62061

Summary: We discuss maximum likelihood methods for fitting a broad class of multivariate categorical response data models. In particular, we derive the large-sample distributions for maximum likelihood estimators of parameters of product-multinomial generalized log-linear models. The large-sample behavior of other relevant likelihood-based statistics such as goodness-of-fit statistics and adjusted residuals is also described. The asymptotic results are derived within the framework of the constraint specification, rather than the more common freedom specification, of the model. We also outline an improved fitting algorithm for computing parameter maximum likelihood estimates and other relevant statistics.
The broad class of multivariate categorical response data models, which are referred to as generalized log-linear models, can imply structure on several response configuration distributions (e.g., joint and marginal distributions). These models, which include as special cases log-linear, logit and cumulative-logit models, enjoy a wide breadth of applications including longitudinal, rater-agreement and cross-over data analyses.

MSC:

62H17 Contingency tables
62J12 Generalized linear models (logistic models)
62H12 Estimation in multivariate analysis
62E20 Asymptotic distribution theory in statistics
Full Text: DOI

References:

[1] AGRESTI, A. 1990. Categorical Data Analy sis. Wiley, New York. Z.
[2] AITCHISON, J. 1962. Large-sample restricted parametric tests. J. Roy. Statist. Soc. Ser. B 24 234 250. Z. JSTOR: · Zbl 0113.13604
[3] AITCHISON, J. and SILVEY, S. D. 1958. Maximum-likelihood estimation of parameters subject to restraints. Ann. Math. Statist. 29 813 828. Z. · Zbl 0092.36704 · doi:10.1214/aoms/1177706538
[4] AITCHISON, J. and SILVEY, S. D. 1960. Maximum-likelihood estimation procedures and associated tests of significance. J. Roy. Statist. Soc. Ser. B 22 154 171. Z. JSTOR: · Zbl 0096.34403
[5] BECKER, M. P. and BALAGTAS, C. C. 1993. A log-nonlinear model for binary cross-over data. Biometrics 49 997 1009. Z. · Zbl 0825.62756
[6] BISHOP, Y., FIENBERG, S. E. and HOLLAND, P. 1975. Discrete Multivariate Analy sis. MIT Press. Z.
[7] DALE, J. R. 1986. Global cross-ratio models for bivariate, discrete, ordered responses. Biometrics 42 909 917. Z.
[8] GILULA, Z. and HABERMAN, S. J. 1986. Canonical analysis of contingency tables by maximum likelihood. J. Amer. Statist. Assoc. 81 780 798. Z. JSTOR: · Zbl 0623.62047 · doi:10.2307/2289010
[9] GLONEK, G. F. V. and MCCULLAGH, P. 1995. Multivariate logistic models. J. Roy. Statist. Soc. Ser. B 57 533 546 Z. · Zbl 0827.62059
[10] HABER, M. 1985a. Maximum likelihood methods for linear and log-linear models in categorical data. Comput. Statist. Data Anal. 3 1 10. Z. · Zbl 0586.62084 · doi:10.1016/0167-9473(85)90053-2
[11] HABER, M. 1985b. Log-linear models for correlated marginal totals of a contingency table. Comm. Statist. Theory Methods 14 2845 2856. Z. · doi:10.1080/03610928508829080
[12] HABER, M. and BROWN, M. 1986. Maximum likelihood methods for log-linear models when expected frequencies are subject to linear constraints. J. Amer. Statist. Assoc. 81 477 482. Z. JSTOR: · Zbl 0604.62058 · doi:10.2307/2289238
[13] HABERMAN, S. J. 1973. The analysis of residuals in cross-classification tables. Biometrics 29 205 220. Z.
[14] HABERMAN, S. J. 1974. The Analy sis of Frequency Data. Univ. Chicago Press. Z. · Zbl 0325.62017
[15] LAIRD, N. M. 1991. Topics of likelihood-based methods for longitudinal data analysis. Statist. Sinica 1 33 50. Z. · Zbl 0829.62068
[16] LANG, J. B. 1996. On the comparison of multinomial and Poisson loglinear models. J. Roy. Statist. Soc. Ser. B 58 253 266. Z. JSTOR: · Zbl 0850.62567
[17] LANG, J. B. and AGRESTI, A. 1994. Simultaneously modeling joint and marginal distributions of multivariate categorical responses. J. Amer. Statist. Assoc. 89 625 632. Z. · Zbl 0799.62063 · doi:10.2307/2290865
[18] MACRAE, E. C. 1974. Matrix derivatives with an application to an adaptive linear decision problem. Ann. Statist. 2 337 346. Z. · Zbl 0285.26013 · doi:10.1214/aos/1176342667
[19] MCCULLAGH, P. and NELDER, J. A. 1989. Generalized Linear Models. Chapman and Hall, London. Z. · Zbl 0744.62098
[20] MOLENBERGHS, G. and LESAFFRE, E. 1994. Marginal modelling of multivariate categorical data. Unpublished manuscript. Z.
[21] PALMGREN, J. 1981. The Fisher information matrix for log linear models arguing conditionally on observed explanatory variables. Biometrika 68 563 566. Z. JSTOR: · Zbl 0477.62039
[22] PIERCE, D. A. and SCHAFER, D. W. 1986. Residuals in generalized linear models. J. Amer. Statist. Assoc. 81 977 986. Z. JSTOR: · Zbl 0644.62076 · doi:10.2307/2289071
[23] PRATT, J. W. 1981. Concavity of the log likelihood. J. Amer. Statist. Assoc. 76 103 106. Z. JSTOR: · Zbl 0465.62058 · doi:10.2307/2287052
[24] SERFLING, R. J. 1980. Approximation Theorems of Mathematical Statistics. Wiley, New York. Z. · Zbl 0538.62002
[25] SILVEY, S. D. 1959. The Lagrange-multiplier test. Ann. Math. Statist. 30 389 407. · Zbl 0090.36302 · doi:10.1214/aoms/1177706259
[26] IOWA CITY, IOWA 52242
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.