zbMATH — the first resource for mathematics

Numerically generated path stabilizing controllers: Use of preliminary feedback. (English) Zbl 0859.93021
The aim of this paper is to introduce a hybrid open-loop closed-loop control strategy for path following control problems, using a strategy due to Jankowski et al., but modified by a preliminary feedback.
The authors begin by considering the linear systems of the form: \[ x'=Ax+Bu, \qquad y=Cx+Du, \] for which they construct a stabilizing control \(u=F(x,\xi(t), \xi'(t),\dots, \xi^{(\nu)}(t))\), \(\nu\) being the index of the system, such that \(y(t)\) converges exponentially to the path \(\xi(t)\). Such control is called a descriptor predictive control and it gives, in a certain limiting case, the state-feedback control constructed in the context of paper, of the form: \(u(t)= K_\xi x(t)+R_\xi (d/dt)\xi(t)\). The authors state a necessary and sufficient condition for the closed-loop system \(x'=(A+BK_\xi)x\) to be stable. The extension to nonlinear systems and some tracking properties are discussed. Finally, two conclusive examples are given.
93B52 Feedback control
93D15 Stabilization of systems by feedback
Full Text: Link EuDML
[1] K. E. Brenan S. L. Campbell, L. R. Petzold: Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations. Elsevier 1989. · Zbl 0699.65057
[2] S. L. Campbell, C. W. Gear: The index of general nonlinear DAEs. Numer. Math., to appear. · Zbl 0844.34007 · doi:10.1007/s002110050165
[3] S. L. Campbell: High index differential algebraic equations. J. Mech. Structures and Machines 23 (1993), 199-222.
[4] S. L. Campbell R. Nikoukhah, D. von Wissel: Numerically generated path stabilizing controllers I: Theoretical concerns. Proc. of ACC, 1994, pp. 1918-1920.
[5] A. Isidori: Nonlinear Control Systems: An Introduction. Springer, Berlin 1989. · Zbl 0569.93034
[6] R. M. Hirschorn: Invertibility of multivariable nonlinear control systems. IEEE Trans. Automat. Control AC-24 (1979), 6, 855-865. · Zbl 0427.93020 · doi:10.1109/TAC.1979.1102181
[7] R. M. Hirschorn: Output tracking in multivariable nonlinear systems. IEEE Trans. Automat. Control AC-26 (1981), 2, 593-595. · Zbl 0477.93010 · doi:10.1109/TAC.1981.1102658
[8] K. P. Jankowski, H. ElMaraghy: Inverse dynamics and feedforward controllers for constrained flexible joint robots. Proc. 31 Conf. Dec. Contr., 1992, pp. 317-322.
[9] K. P. Jankowski, H. Van Brussel: Discrete-time inverse dynamics control of flexible joint robots. J. Dynamic Systems, Measurement and Control 114 (1992), 229-233. · Zbl 0775.93153 · doi:10.1115/1.2896519
[10] K. P. Jankowski, H. Van Brussel: An approach to discrete inverse dynamics control of flexible-joint robots. IEEE Trans. Robotics Automation 8 (1992), 651-658. · Zbl 0775.93153
[11] L.M. Silverman: Inversion of Multivariable Linear Systems. IEEE Trans. Automat. Control AC-14 (1969), 3, 270-276.
[12] L. M. Silverman: Discrete Riccati equations: Alternative algorithms, asymptotic properties, and system theory interpretations. Control and Dynamic Systems, Advances in Theory and Appl. 12 (1976), 313-386. · Zbl 0362.49014
[13] W. Respondek, H. Nijmeijer: On local right-inveritibility of nonlinear control systems. Control-Theory and Advanced Technology 4 (1988), 3, 325-348.
[14] D. von Wissel, R. Nikoukhah: Hybrid Open-Loop Closed-Loop Path-following Control with Preliminary Feedback. Research Report No. 2173, INRIA, January, 1994.
[15] D. von Wissel R. Nikoukhah, S. L. Campbell: On a new predictive control strategy: Application to a flexible-joint robot. CDC, Florida 1994, pp. 3025-3026.
[16] M. Wonham: Linear Multivariable Control. Springer-Verlag, New York 1972. · Zbl 0314.93008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.