Chajda, Ivan Indexed annihilators in lattices. (English) Zbl 0860.06005 Arch. Math., Brno 31, No. 4, 259-262 (1995). Let \(L\) be a lattice and \(a,b\in L\). An annihilator \(\langle a,b\rangle\) in \(L\) is the set \(\{x\in L: x\wedge a\leq b\}\). The author modifies this definition as follows: Let \(L\) be a lattice, \(\Gamma\neq \emptyset\) an index set and \(a_\gamma, b_\gamma\in L\) for \(\gamma\in \Gamma\). By an indexed annihilator is meant the set \(\{x\in L: a_\gamma\wedge x\leq b_\gamma\) for each \(\gamma\in \Gamma\}\). The author derives some straightforward consequences of this concept. Reviewer: T.Katriňák (Bratislava) Cited in 1 Document MSC: 06B10 Lattice ideals, congruence relations 06D15 Pseudocomplemented lattices Keywords:indexed annihilator PDFBibTeX XMLCite \textit{I. Chajda}, Arch. Math. (Brno) 31, No. 4, 259--262 (1995; Zbl 0860.06005) Full Text: EuDML