zbMATH — the first resource for mathematics

Boundary cohomology of Shimura varieties. II: Hodge theory at the boundary. (English) Zbl 0860.11031
[For part I, see the preceding review.]
Let \(G\) be a semisimple algebraic group defined over \(\mathbb{Q}\), \(\Gamma\) a torsion-free, neat arithmetic subgroup, and \(K\) a maximal compact subgroup of \(G(\mathbb{R})\) such that the symmetric space \(G(\mathbb{R})/K\) has a \(G(\mathbb{R})\)-invariant complex structure. An algebraic representation \(G\to GL(V)\) defined over \(\mathbb{Q}\) determines a locally constant sheaf \(\widetilde{\mathbf V}\) over the Shimura variety \(M= \Gamma \backslash G(\mathbb{R})/K\). Assume that \(G\) is of \(\mathbb{Q}\)-rank nonzero, so that \(M\) is noncompact. If \(\widetilde M\) is a toroidal compactification and if \(\partial\widetilde M\) is its boundary, \(\widetilde {\mathbf V}\) can be extended to \(\widetilde M\) and there is a long exact cohomology sequence \[ \cdots \to H^i_c (M,\widetilde {\mathbf V}) \to H^i(M, \widetilde {\mathbf V}) \to H^i (\partial \widetilde M, \widetilde {\mathbf V}) \to\cdots. \] The boundary \(\partial \widetilde M\) of \(\widetilde M\) has a closed covering whose strata correspond to the \(\Gamma \)-conjugacy classes of proper parabolic subgroups of \(G\). Then the nerve of this covering determines the nerve spectral sequence \(\{E_r\}\) which abuts to \(H^\bullet (\partial \widetilde M, \widetilde {\mathbf V})\). The locally constant sheaf \(\widetilde {\mathbf V}\) underlies a polarizable variation of \(\mathbb{Q}\)-Hodge structure, and each term in the long exact cohomology sequence above has a canonical mixed Hodge structure. Furthermore, each mapping in that sequence is a morphism of mixed Hodge structure. In this paper, the authors prove that the nerve spectral sequence is a spectral sequence of mixed Hodge structures. They also determine the mixed Hodge structure on the \(E_1\)-term of the nerve spectral sequence. (Same review submitted to MR).

11G18 Arithmetic aspects of modular and Shimura varieties
14G35 Modular and Shimura varieties
Full Text: DOI EuDML
[1] [AMRT] Ash, A., Mumford, D., Rapoport, M., Tai, Y.-S.: Smooth Compactification of Locally Symmetric Varieties. Brookline, MA: Math. Sci. Press 1975 · Zbl 0334.14007
[2] [BB] Baily, W.L. Jr., Borel, A.: Compactification of arithmetic quotients of bounded symmetric domains. Ann. Math.84, 442-528 (1966) · Zbl 0154.08602 · doi:10.2307/1970457
[3] [B] Borel, A.: Cohomology and spectrum of an arithmetic group. In: Operator Algebras and Group Representations. Proc. Neptun, Romania, 1980, Pitman, pp. 28-45. Boston London Melborne: Pitman (1984)
[4] [BS] Borel, A., Serre, J.-P.: Corners and arithmetic groups. Comment. Math. Helv.48, 436-491 (1973) · Zbl 0274.22011 · doi:10.1007/BF02566134
[5] [CK] Cattani, E., Kaplan, A.: Polarized mixed Hodge structure and the monodromy of a variation of Hodge structure. Invent. Math.67, 101-115 (1982) · Zbl 0516.14005 · doi:10.1007/BF01393374
[6] [D1] Deligne, P.: Equations Differentielles à Points Singuliers Réguliers. Berlin Heidelberg New York: Springer Lect. Notes Math., vol. 163, (1970)
[7] [D2] Deligne, P.: Théorie de Hodge. II. Publ. Math. IHES40, 5-57 (1972)
[8] [D3] Deligne, P.: Théorie de Hodge. III. Publ. Math. IHES44, 5-77 (1974)
[9] [D4] Deligne, P.: Variétés de Shimura: Interprétation modulaire, et techniques de construction de modèles canoniques. In: Automorphic Forms, Representations, andL-functions. Proc. Symp. Pure Math.33, 247-290 (1979)
[10] [D5] Deligne, P.: La conjecture de Weil. II. Publ. Math. IHES52, 137-252 (1980)
[11] [D6] Deligne, P.: Theorème de Lefschetz et critères de dégénérescence de suites spectrales. Publ. Math. IHES35, 107-126 (1969)
[12] [E] El Zein, F.: Complexe de Hodge mixte filtré. C.R. Acad. Sci., Paris295, 669-672 (1982) · Zbl 0511.14004
[13] [Hd1] Harder, G.: On the cohomology of discrete arithmetically defined groups. In: Proc. of the Int. Colloq. on Discrete Subgroups of Lie Groups and Applications to Moduli, Oxford University Press, pp. 129-160, 1975
[14] [Hd2] Harder, G.: Some results on the Eisenstein cohomology of arithmetic subgroups ofGL n . In: Labesse, J.-P., Schwermer, J. (eds.), Cohomology of Arithmetic Groups and Automorphic Forms. Berlin Heidelberg New York: Springer Lect. Notes Math. vol.1447, 85-153 (1990)
[15] [Hd3] Harder, G.: Eisenstein cohomology of arithmetic groups and its applications to number theory. In: Proc. ICM (Kyoto, 1990), 779-790.
[16] [H1] Harris, M.: Functorial properties of toroidal compactifications of locally symmetric varieties. Proc. London Math. Soc.59, 1-22 (1989) · Zbl 0711.14011 · doi:10.1112/plms/s3-59.1.1
[17] [H2] Harris, M.: Arithmetic vector bundles and automorphic forms on Shimura varieties, II. Compos. Math.60, 323-378 (1986) · Zbl 0612.14019
[18] [H3] Harris, M.: Hodge-de Rham structures and periods of automorphic forms. In: Motives, Seattle, 1991, Proc. Symp. Pure Math. (to appear)
[19] [HZ] Harris, M., Zucker, S.: Boundary cohomology of Shimura varieties, I: Coherent cohomology on toroidal compactifications. Ann. Ec. Norm. Super. (to appear) · Zbl 0860.11030
[20] [He] Helgason, S.: Differential Geometry. Lie Groups, and Symmetric Spaces. London New York: Academic Press, 1978 · Zbl 0451.53038
[21] [Ka] Kashiwara, M.: A study of variation of mixed Hodge structure. Publ. RIMS, Kyoto Univ.22, 991-1024 (1986) · Zbl 0621.14007 · doi:10.2977/prims/1195177264
[22] [Ko] Kostant, B.: Lie algebra cohomology and the generalized Borel-Weil theorem. Ann. Math.74, 329-387 (1961) · Zbl 0134.03501 · doi:10.2307/1970237
[23] [LR] Looijenga, E., Rapoport, M.: Weights in the local cohomology of a Baily-Borel compactification. In: Complex Geometry and Lie Theory. Proc. Symp. Pure Math.53, 223-260 (1991) · Zbl 0753.14016
[24] [Mi] Milne, J.: Canonical models of (mixed) Shimura varieties and automorphic vector bundles. In: Clozel, L., Milne, J. (eds.) Automorphic Forms, Shimura Varieties, andL-functions, vol. 1, 283-414 (1990)
[25] [Mo] Moore, C.: Compactifications of symmetric spaces II: the Cartan domains. Am. J. Math.86, 358-378 (1964) · Zbl 0156.03202 · doi:10.2307/2373170
[26] [Mu] Mumford, D.: Hirzebruch’s proportionality theorem in the non-compact case. Invent. Math.42, 239-272 (1977) · Zbl 0365.14012 · doi:10.1007/BF01389790
[27] [Na] Navarro Aznar, V.: Sur la théorie de Hodge-Deligne. Invent. Math.90, 11-76 (1987) · Zbl 0639.14002 · doi:10.1007/BF01389031
[28] [No] Nomizu, K.: On the cohomology of compact homogeneous spaces of nilpotent Lie groups. Ann. of Math.59, 531-538 (1954) · Zbl 0058.02202 · doi:10.2307/1969716
[29] [O] Oda, T.: Periods of Hilbert modular surfaces. Prog. Math. vol. 19, Birkhäuser, Boston (1982) · Zbl 0489.14014
[30] [OS] Oda, T., Schwermer, J.: Mixed Hodge structures and automorphic forms for Siegel modular varieties of degree two. Math. Ann.286, 481-509 (1990) · Zbl 0678.10022 · doi:10.1007/BF01453584
[31] [P1] Pink, R.: Arithmetical compactifications of mixed shimura varieties. Dissertation, Universität Bonn, 1989 (Bonn Math. Schrift Nr. 209 (1990))
[32] [P2] Pink, R.: On ?-adic sheaves on Shimura varieties and their higher direct images in the Baily-Borel compactification. Math. Ann.292, 197-240 (1992) · Zbl 0748.14008 · doi:10.1007/BF01444618
[33] [R] Rapoport, M.: Letter to M. Goresky and R. MacPherson, August14, 1991
[34] [S1] Saito, Mo: Introduction to mixed Hodge modules. Théorie de Hodge: Luminy, Juin 1987, Astérisque179-180, 145-162 (1989)
[35] [S2] Saito, Mo: Mixed Hodge modules and admissible variations. C.R.A.S. Paris309, 351-356 (1989) · Zbl 0765.14006
[36] [S3] Saito, Mo.: Mixed Hodge modules. Pub. RIMS, Kyoto University26, 221-333 (1990) · Zbl 0727.14004 · doi:10.2977/prims/1195171082
[37] [SZ] Saito, Mo., Zucker, S.: The kernel spectral sequence of vanishing cycles. Duke Math. J.61, 329-339 (1990) · Zbl 0756.32020 · doi:10.1215/S0012-7094-90-06114-9
[38] [Sa] Satake, I.: On compactifications of the quotient spaces for arithmetically defined discontinuous groups. Ann. Math.72, 555-580 (1960) · Zbl 0146.04701 · doi:10.2307/1970229
[39] [Sc] Schmid, W.: Variation of Hodge structure: The singularities of the period mapping. Invent. Math.22, 211-319 (1973) · Zbl 0278.14003 · doi:10.1007/BF01389674
[40] [Sw] Schwermer, J.: Kohomologie arithmetisch definierter Gruppen und Eisensteinreihen. Berlin Heidelberg New York: Springer (Lect. Notes Math. vol. 988, 1983) · Zbl 0506.22015
[41] [Se] Serre, J.-P.: Geométrie algébrique et géométrie analytique. Ann. Inst. Fourier6, 1-42 (1956)
[42] [StZ] Steenbrink, J., Zucker, S.: Variation of mixed Hodge structure. I. Invent. Math.80, 489-542 (1985) · Zbl 0626.14007 · doi:10.1007/BF01388729
[43] [Sn] Stern, M.: Harmonic representatives of de Rham cohomology on locally symmetric spaces, 1992
[44] [Z1] Zucker, S.: Hodge theory with degenerating coefficients:L 2 cohomology in the Poincaré metric. Ann. Math.109, 415-476 (1979) · Zbl 0446.14002 · doi:10.2307/1971221
[45] [Z2] Zucker, S.: Locally homogeneous variations of Hodge structure. L’Enseignement Math.27, 243-276 (1981) · Zbl 0584.14003
[46] [Z3] Zucker, S.:L 2 cohomology of warped products and arithmetic groups. Invent. Math.70, 169-218 (1982) · Zbl 0508.20020 · doi:10.1007/BF01390727
[47] [Z4] Zucker, S.: Satake compactifications. Comment. Math. Helv.58, 312-343 (1983) · Zbl 0565.22009 · doi:10.1007/BF02564638
[48] [Z5] Zucker, S.:L 2 cohomology and intersection homology of locally symmetric varieties, II. Compos. Math.59, 339-398 (1986) · Zbl 0624.14014
[49] [Z6] Zucker, S.:L p -cohomology and Satake compactifications. In: J. Noguchi, T. Ohsawa (eds.), Prospects in Complex Geometry: Proceedings, Katata/Kyoto 1989. Berlin Heidelberg New York: Springer (Lect. Notes Math. vol. 1468, pp. 317-339) 1991 · Zbl 0753.14017
[50] [Z7] Zucker, S.:L 2-cohomology of Shimura varieties. In: Clozel, L., Milne, J. (eds.) Automorphic Forms, Shimura Varieties, andL-functions, vol. 2, 377-391 (1990)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.