×

Densities of self-similar measures on the line. (English) Zbl 0860.28005

This paper mainly deals with a numerical approximation to compute self-similar measures \(\mu\) on \([0,1]\) such that \(\mu= \sum^m_{j=1}p_j\mu\circ S^{-1}_j\) for an IFS \(([0,1]\); \(S_1,\dots,S_m\)) and positive weights \(p_j\), but also with self-replicating measures \(\mu\) such that for Borel sets \(A\) in \([0,1]\), \(\mu(A)= \sum^m_{j=1} \int_{S^{-1}_jA} p_jd\mu\), and the \(p_j\) become nonnegative functions.
A set of interval partition data is a pair \(({\mathcal J},\nu)\) such that \(\nu:{\mathcal J}\to[0,1]\) and \(\mathcal J\) is a finite collection of non-overlapping subintervals \(J\subset [0,1]\) such that \(\sum_{J\in{\mathcal J}}\nu(J)=1\). \(\mu\) matches the data \(({\mathcal J},\nu)\) exactly iff \(\mu(J)=\nu(J)\) for all \(J\in{\mathcal J}\).
The numerical algorithm is as follows: Set \({\mathcal J}_0=\{[0,1]\}\), \(\nu_0([0,1])=1\), and given \(({\mathcal J}_{k-1},\nu_{k-1})\), let \[ {\mathcal J}_k= \{S_jJ\mid j=1,\dots,m,\;J\in {\mathcal J}_{k-1}\}\quad\text{and} \quad \nu_k(S_jJ)= p_j\nu_{k-1}(J)\text{ for } J\in {\mathcal J}_{k-1}. \] Now, if \(\mu\) matches \(({\mathcal J}_{k-1},\nu_{k-1})\), so it will \(({\mathcal J}_k,\nu_k)\). Later on, this simple algorithm will be modified. The authors discuss error measurement of these algorithms. The numerical approach to \(\mu\) is used to study the density diagram of \(\mu\), \[ \{(s,h(x,s))\mid x\in\text{carrier}(\mu),\;s\geq 0\}, \] where \[ h(x,s)= {\mu(B_{c^{-s}}(x))\over (2c^{-s})^\alpha} \] for given \(\alpha,c>0\) and \(B_{c^{-s}}(x)\) the closed ball at \(x\) and radius \(c^{-s}\). The diagram is (highly) self-similar and overcomes the problem of non-existence of an exact density function.
Finally, the paper includes also the problem of the correct normalization of Hausdorff measures and some other averaging density definitions.

MSC:

28A80 Fractals

References:

[1] Aaronson J., Trans. Amer. Math. Soc. 337 pp 495– (1993) · Zbl 0789.28010 · doi:10.2307/2154231
[2] Ayer E., ”Exact Hausdorff measure and intervals of maximum density for Cantor sets” (1995)
[3] Bandt C., Monatsch. Math. 108 pp 89– (1989) · Zbl 0712.58039 · doi:10.1007/BF01308664
[4] Bandt C., ”The tangential distribution for self-similar measures” (1992)
[5] Barnsley M., Fractals Everywhere (1988)
[6] Barnsley M. F., Adv. Appl. Prob. 20 pp 14– (1988) · Zbl 0643.60050 · doi:10.2307/1427268
[7] Barnsley M. F., Constr. Approx. (1989)
[8] Bedford T., of reals and integers Proc. London Math. Soc. (3) 64 pp 95– (1992) · Zbl 0706.28009 · doi:10.1112/plms/s3-64.1.95
[9] Blanchard P., Bull. Amer. Math. Soc. 11 pp 85– (1984) · Zbl 0558.58017 · doi:10.1090/S0273-0979-1984-15240-6
[10] Bowen R., Equilibrium states and the ergodic theory of Anosov diffeomorphisms (1975) · Zbl 0308.28010 · doi:10.1007/BFb0081279
[11] Cawley R., Advances in Math. 92 pp 196– (1992) · Zbl 0763.58018 · doi:10.1016/0001-8708(92)90064-R
[12] Dudley R. M., Studia Math. 27 pp 251– (1966)
[13] Edgar G. A., Proc. London Math. 65 pp 604– (1992) · Zbl 0764.28007 · doi:10.1112/plms/s3-65.3.604
[14] Falconer K. J., The geometry of fractal sets (1985) · Zbl 0587.28004 · doi:10.1017/CBO9780511623738
[15] Falconer K. J., Fractal Geometry: Mathematical Foundations and Applications (1990)
[16] Falconer K. J., J. Stat. Phys. 67 pp 781– (1992) · Zbl 0893.28006 · doi:10.1007/BF01049726
[17] Graf S., ”On Bandt’s tangential distribution of self-similar measures” (1993) · Zbl 0841.28011
[18] Hofbauer F., monotonic maps of the interval Studia Math. 103 pp 191– (1992)
[19] Hutchinson J. E., Indiana U. Math. J. 30 pp 713– (1981) · Zbl 0598.28011 · doi:10.1512/iumj.1981.30.30055
[20] Janardhan P., measures and wavelets Experimental Math. pp 249– (1992) · Zbl 0788.65129 · doi:10.1080/10586458.1992.10504561
[21] Lau K.-S., J. Functional Anal. 108 pp 427– (1992) · Zbl 0767.28007 · doi:10.1016/0022-1236(92)90031-D
[22] Lau K.-S., J. Functional Anal. 116 pp 335– (1993) · Zbl 0788.60055 · doi:10.1006/jfan.1993.1116
[23] Lau K.-S., Monat. Math. 115 pp 99– (1993) · Zbl 0778.28005 · doi:10.1007/BF01311213
[24] Marion J., Ann. sc. math. Québec 10 pp 51– (1986)
[25] Marion J., Ann. sc. math. Québec 11 pp 111– (1987)
[26] Patzschke N., Proc. Amer. Math. Soc. 117 pp 137– (1993)
[27] Rachev S. T., Probability metrics and the stability of stochastic models (1991) · Zbl 0744.60004
[28] Ruelle D., Scaling and self-similarity in physics: renormalization in statistical mechanics and dynamics pp 351– (1983) · doi:10.1007/978-1-4899-6762-6_11
[29] Stein E. M., Introduction to Fourier analysis on Euclidean spaces (1971)
[30] Strichartz R. S., J. Functional Anal. 89 pp 154– (1990) · Zbl 0693.28005 · doi:10.1016/0022-1236(90)90009-A
[31] Strichartz R. S., Indiana U. Math. J. 39 pp 797– (1990) · Zbl 0695.28003 · doi:10.1512/iumj.1990.39.39038
[32] Strichartz R. S., J. Functional Anal. 102 pp 176– (1991) · Zbl 0741.28006 · doi:10.1016/0022-1236(91)90140-Z
[33] Strichartz R. S., Trans. Amer. Math. Soc. 336 pp 335– (1993) · Zbl 0765.28007 · doi:10.2307/2154350
[34] Strichartz R. S., Indiana U. Math. J. 42 pp 367– (1993) · Zbl 0790.28003 · doi:10.1512/iumj.1993.42.42018
[35] Strichartz R. S., J. Fourier Anal. Appl. (1994)
[36] Sullivan D., Geometric Dynamics pp 725– (1983) · doi:10.1007/BFb0061443
[37] Tsujii Y., Hiroshima Math. J. 21 pp 491– (1991)
[38] Young L.-S., Ergod. Th. Dynam. Sys. pp 109– (1982) · Zbl 0523.58024 · doi:10.1017/S0143385700009615
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.