Kerkyacharian, Gérard; Picard, Dominique Estimating nonquadratic functionals of a density using Haar wavelets. (English) Zbl 0860.62033 Ann. Stat. 24, No. 2, 485-507 (1996). Summary: Consider the problem of estimating \(\int\Phi(f)\), where \(\Phi\) is a smooth function and \(f\) is a density with given order of regularity \(s\). Special attention is paid to the case \(\Phi(t)= t^3\). It has been shown that for low values of \(s\) the \(n^{-1/2}\) rate of convergence is not achievable uniformly over the class of objects of regularity \(s\). In fact, a lower bound for this rate is \(n^{-4s/ (1+4s)}\) for \(0< s\leq 1/4\). As for the upper bound, using a Taylor expansion, it can be seen that it is enough to provide an estimate for the case \(\Phi(x)= x^3\). That is the aim of this paper. Our method makes intensive use of special algebraic and wavelet properties of the Haar basis. Cited in 17 Documents MSC: 62G07 Density estimation 62G20 Asymptotic properties of nonparametric inference 42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems Keywords:Besov spaces; minimax estimation; estimation of nonlinear functionals; integral functionals of densities; wavelet estimate; U-statistic; rate of convergence; Taylor expansion; Haar basis × Cite Format Result Cite Review PDF Full Text: DOI References: [1] BERGH, J. and LOFSTROM, J. 1976. Interpolation Spaces: An Introduction. Springer, Berlin. \" \" Z. · Zbl 0344.46071 [2] BICKEL, P. and RITOV, Y. 1988. Estimating integrated squares density derivatives: sharp best order of convergence estimates. Sankhy a Ser. A 50 381 393. Z. · Zbl 0676.62037 [3] BIRGE, L. and MASSART, P. 1995. Estimation of integral functionals of a density. Ann. Statist. \' 23 11 29. Z. · Zbl 0848.62022 · doi:10.1214/aos/1176324452 [4] DONOHO, D. L., JOHNSTONE, I. M., KERKy ACHARIAN, G. and PICARD, D. 1995. Wavelet shrinkage: Z. asy mptopia? with discussion. J. Roy. Statist. Soc. Ser. B 57 301 369. Z. JSTOR: [5] DONOHO, D. and NUSSBAUM, M. 1990. Minimax quadratic estimation of a quadratic functional. J. Complexity 6 290 323. · Zbl 0724.62039 · doi:10.1016/0885-064X(90)90025-9 [6] GOLDSTEIN, L. and MESSER, K. 1992. Optimal plug-in estimate for nonparametric functional estimation. Ann. Statist. 20 1306 1328. Z. · Zbl 0763.62023 · doi:10.1214/aos/1176348770 [7] HALL, P. and MARRON, S. 1987. Estimation of integrated squared density derivatives. Statist. Probab. Lett. 6 109 115.Z. · Zbl 0628.62029 · doi:10.1016/0167-7152(87)90083-6 [8] HASMINSKII, R. and IBRAGIMOV, I. 1979. On the non parametric estimation of functionals. In Z Proceedings of the Second Prague Sy mposium in Asy mptotic Statistics P. Mandl and. M. Hushkova, eds. 41 55. North-Holland, Amsterdam. Z. [9] JOHNSTONE, I., KERKy ACHARIAN, G. and PICARD, D. 1992. Estimation d’une densite de proba\' bilite par methode d’ondelettes. C. R. Acad. Sci. Paris Ser. I Math. 315 211 216. \' \' Ź. · Zbl 0755.62036 [10] KERKy ACHARIAN, G. and PICARD, D. 1992a. Density estimation in Besov spaces. Statist. Probab. Lett. 13 15 24. Z. [11] KERKy ACHARIAN, G. and PICARD, D. 1992b. Density estimation by kernel and wavelet method: link between kernel geometry and regularity constraints. C. R. Acad. Sci. Paris Ser. I Ḿath. 315 79 84. Z. · Zbl 0749.62027 [12] KERKy ACHARIAN, G. and PICARD, D. 1993. Density estimation by kernel and wavelet methods: optimality of Besov spaces. Statist. Probab. Lett. 18 327 336. Z. · Zbl 0793.62019 · doi:10.1016/0167-7152(93)90024-D [13] LAURENT, B. 1996. Efficient estimation of integral functionals of a density. Ann. Statist. 24 659 681. Z. · Zbl 0859.62038 · doi:10.1214/aos/1032894458 [14] LEVIT, B. 1979. Asy mptotically efficient estimation of non linear functionals. Problems Inform. Transmission 14 65 72. Z. [15] MEy ER, Y. 1990. Ondelettes et Operateurs I. Hermann, Paris. Ź. [16] NEMIROVSKII, A. S. 1990. On necessary conditions for efficient estimation of functional of a non parametric signal in white noise model. Theory Probab. Appl. 35 94 103. Z. · Zbl 0721.62043 · doi:10.1137/1135009 [17] PEETRE, J. 1975. New Thoughts on Besov Spaces. Dept. Mathematics, Duke Univ., Durham, NC. Z. · Zbl 0356.46038 [18] RITOV, Y. and BICKEL, P. 1990. Achieving information bounds in non and semi parametric models. Ann. Statist. 18 925 938. · Zbl 0722.62025 · doi:10.1214/aos/1176347633 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.