×

zbMATH — the first resource for mathematics

Error indicators for mixed finite elements in 2-dimensional linear elasticity. (English) Zbl 0860.73064
Summary: We establish a posteriori error indicators for mixed finite elements in plane elasticity. The error estimators refer to residuals of the strong equations and to jumps of the displacements on interelement boundaries. For the BDM elements of lowest order, the error indicators are computed with displacement fields which are obtained by a postprocessing procedure. Numerical examples show that adaptive mesh refinements based on these estimators lead to very efficient algorithms.

MSC:
74S05 Finite element methods applied to problems in solid mechanics
74B05 Classical linear elasticity
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Brezzi, F.; Douglas, J.; Marini, L.D., Recent results on mixed finite element methods for second order elliptic problems, (), 25-43
[2] Stenberg, R., A family of mixed finite elements for the elasticity problem, Numer. math., 53, 513-538, (1988) · Zbl 0632.73063
[3] Arnold, D.N.; Brezzi, F.; Douglas, J., PEERS: A new mixed finite element for plane elasticity, Japan J. appl. math., 1, 347-367, (1984) · Zbl 0633.73074
[4] Stein, E.; Rolfes, R., Mechanical conditions for stability and optimal convergence of mixed finite elements for linear plane elasticity, Comput. methods appl. mech. engrg., 84, 77-95, (1990) · Zbl 0729.73208
[5] Klaas, O.; Schröder, J.; Stein, E.; Miehe, C., A regularized dual mixed element for plane elasticity. implementation and performance of the BDM-element, Comput. methods appl. mech. engrg., 121, 201-209, (1995) · Zbl 0852.73065
[6] Verfürth, R., A posteriori error estimators for the Stokes problem, Numer. math., 55, 309-325, (1989) · Zbl 0674.65092
[7] Braess, D.; Verfürth, R., A posteriori error estimators for the Raviart-Thomas element, SIAM J. numer. anal., (1995/96), to appear · Zbl 0866.65071
[8] Babuska, I.; Osborn, J.; Pitkäranta, J., Analysis of mixed methods using mesh dependent norms, Math. comput., 35, 1039-1062, (1980) · Zbl 0472.65083
[9] Brezzi, F.; Fortin, M., Mixed and hybrid finite element methods, (1991), Springer-Verlag Berlin · Zbl 0788.73002
[10] Brezzi, F.; Douglas, J.; Marini, L.D., Two families of mixed finite elements for second order elliptic problems, Numer. math., 47, 217-235, (1985) · Zbl 0599.65072
[11] Arnold, D.N.; Brezzi, F., Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates, Rairo m^{2}an, 19, 7-32, (1985) · Zbl 0567.65078
[12] Braess, D., Finite element, (1992), Springer-Verlag Berlin
[13] W. Dörfler, A convergent adaptive algorithm for Poisson’s equation, SIAM J. Numer. Anal, to appear.
[14] R. Hoppe and B. Wohlmuth, Adaptive multilevel techniques for mixed finite element discretizations of elliptic boundary value problems, submitted. · Zbl 0889.65124
[15] Simo, J.C.; Rifai, M.S., A class of mixed assumed strain methods and the method of incompatible modes, Int. J. numer. methods engrg., 29, 1595-1638, (1990) · Zbl 0724.73222
[16] Zienkiewicz, O.C.; Zhu, J.Z., A simple error estimator and adaptive procedure for practical engineering analysis, Int. J. numer. methods engrg., 24, 337-357, (1987) · Zbl 0602.73063
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.