zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On Whitney numbers of Dowling lattices. (English) Zbl 0861.05004
Let $(L,\le)$ be a finite lattice and let $h(x)$ be the height function on $L$. The Whitney numbers of the second kind $W(L,k)$ for $L$ are deferred by $W(L,k)=|\{x\in L:h(x)=k\}|$. Let $W_m(n,k)$ denote the Withney numbers for the Dowling geometric lattice $Q_n(G)$ over a group $G$ of order $m$. From the author’s introduction: The organization of the paper is as follows. In Section 2, we determine the generating function for the sequence $W_m(n,k)$, $0\le k\le n$. As a consequence, we derive an explicit formula, which is a generalization of the formula for the Stirling numbers of the second kind. Also, we consider the sum of Whitney numbers of the second kind, $D_m(n)$, which we call Dowling numbers; these numbers are a generalization of Bell’s. The generating function of $D_m(n)$ is used to locate with high precision the mode of the sequence $W_m(n,k)$ (Section 4). The third section is devoted to the Whitney numbers of the first kind. We give generating functions, as well as some recurrence and congruence relations. Those are essentially generalization of some facts known about Stirling numbers of the first kind. In the last section, we locate the modes of the Whitney numbers of both kinds. For the Whitney numbers of the second kind, the calculations are long and tedious, therefore we give only the idea and the results.

05A15Exact enumeration problems, generating functions
06C10Semimodular lattices, geometric lattices
Full Text: DOI
[1] Bender, E. A.; Zeilberger, D.: Some asymptotic bijections. J. combin. Theory, ser. A 38, 96-98 (1985) · Zbl 0554.05004
[2] Benoumhani, M.: Polynômes à racines négatives et applications combinatoires. Thesis (1993)
[3] M. Benoumhani, Sur une propriété des polynômes à racines réelles négatives, to appear. J. Math. Pures et Appliquées.
[4] M. Benoumhani, The concavity of Whitney numbers of Dowling lattices, submitted for publication. · Zbl 0918.05003
[5] Binet, F. E.; Szekeres, G.: On Borel fields over finite sets. Ann. math. Stat. 28, 410-414 (1958) · Zbl 0078.02003
[6] Birkhoff, G.: Lattice theory. (1967) · Zbl 0153.02501
[7] Brenti, F.: Unimodal, log-concave and Pólya frequency sequences. Memoirs of the AMS (Sept 1989)
[8] Canfield, E. R.: On a problem of Rota. Discrete math., 1-10 (1978) · Zbl 0378.05003
[9] E.R. Canfield and H. Harper, Large antichains in the lattice of partitions of a set, to appear. · Zbl 0833.06003
[10] Comtet, L.: Advanced combinatorics. (1974) · Zbl 0283.05001
[11] Damiani, T. E.; D’antona, O.; Regonati, F.: Whitney numbers of some geometric lattices. J. combin. Theory, ser. A 65, 11-25 (1994) · Zbl 0793.05037
[12] Dilworth, R. P.; Greene, C.: A counterexample to the generalization of sperner’s theorem. J. combin. Theory, ser. B 95, 18-21 (1978) · Zbl 0257.05022
[13] Dobson, E.: A note on Stirling numbers of the second kind. J. combin. Theory 5, 231-232 (1968) · Zbl 0164.33001
[14] Dowling, T. A.: A class of geometric lattices based on finite groups. J. combin. Theory, ser. B 15, 211 (1973) · Zbl 0247.05019
[15] Egorychev, G. P.: Integral representation and the computation of combinatorial sums. Translations of math. Monographs (1989)
[16] Erdös, P.: On a conjecture of hammerseley. Proc. London math., 235-239 (1952)
[17] Gilpin, M.: Three identies between Stirling numbers and the stabilizing character sequence. Proceedings of the AMS 60, 360-364 (1976) · Zbl 0357.05009
[18] Graham, R. L.; Knuth, D. E.; Patashnik, O.: Concrete mathematics. (1989) · Zbl 0668.00003
[19] Gross, O. A.: Preferential arrangements. Amer. math. Monthly, 4-8 (1962) · Zbl 0111.15701
[20] Hammersley, J. M.: The sum of the products of the natural numbers. Proc. London math., 435-452 (1951) · Zbl 0044.03902
[21] Hardy, G. H.; Littlewood, J. E.; Pólya, G.: Inequalities. (1952) · Zbl 0047.05302
[22] Harper, H.: Stirling behavior is asymptotically normal. Ann. math. Statist. 38, 410-414 (1967) · Zbl 0154.43703
[23] Jichang, S.; Kleitman, D.: Superantichains in the lattice of partitions of a finite set. Stud. appl. Math. 71, 207-241 (1984) · Zbl 0559.05006
[24] Kahale, N.: New modular properties of Bell numbers. J. combin. Theory ser. A 58, 147-152 (1991) · Zbl 0833.11006
[25] Kung, J. P. S.: 3rd ed. A source book in matroid theory. A source book in matroid theory (1986) · Zbl 0597.05019
[26] Layman, J. W.: Maximum zero strings of Bell numbers. J. combin. Theory 40, 161-168 (1985) · Zbl 0577.10012
[27] Lieh, E.: Concavity properties and a generating function to Stirling numbers. J. combin. Theory 5, 147-152 (1968)
[28] Moser, L.; Wyman, M.: An asymptotic formula for the Bell numbers. Trans. roy. Soc. can., 441-445 (1955) · Zbl 0066.31001
[29] Nijenhuis, A.; Wilf, H. S.: Periodicities of partition functions and Stirling numbers modulo p. J. num. Theory 25, 308-312 (1987) · Zbl 0607.10010
[30] Rota, G-C.: The number of partition of a set. Amer. math. Monthly, 498-504 (1964) · Zbl 0121.01803
[31] Shearer, J. B.: A simple counterexample to a conjecture of Rota. Discrete math. 28, 327-330 (1979) · Zbl 0427.06001
[32] Stanley, R. P.: 3rd ed. Enumerative combinatorics. Enumerative combinatorics 1 (1986)
[33] Stonesifer, S. J. R.: Logarithmic concavity for a class of geometric lattices. J. combin. Theory ser. A, 216-218 (1975) · Zbl 0312.05019
[34] Tanny, S.: On some numbers related to the Bell numbers. Can.math.bull 17, 733-738 (1975) · Zbl 0304.10007
[35] Tsumura, H.: On some congruences for the Bell numbers and for the Stirling numbers. J. num. Theory 38, 206-211 (1991) · Zbl 0734.11020