Matsak, I. K.; Plichko, A. N. Exponential estimates for sums \(\sum \varepsilon_ n x_ n\) in Banach lattices. (English. Ukrainian original) Zbl 0861.60009 Theory Probab. Math. Stat. 49, 115-122 (1994); translation from Teor. Jmovirn. Mat. Stat. 49, 161-171 (1993). Summary: Properties of sums of independent random variables in Banach lattices over the field of real numbers are investigated. The main attention is focused on obtaining exponential estimates for sums \(\sum\varepsilon_nx_n\), where \((\varepsilon_n)\) is a sequence of independent Bernoulli random variables. MSC: 60B11 Probability theory on linear topological spaces 60E15 Inequalities; stochastic orderings 60G50 Sums of independent random variables; random walks 60F10 Large deviations Keywords:Banach lattices; exponential estimates; sequence of independent Bernoulli random variables PDFBibTeX XMLCite \textit{I. K. Matsak} and \textit{A. N. Plichko}, Theory Probab. Math. Stat. 49, 1 (1993; Zbl 0861.60009); translation from Teor. Jmovirn. Mat. Stat. 49, 161--171 (1993)