Molchanov, I. S. A limit theorem for intersections of random semi-spaces. (English. Ukrainian original) Zbl 0861.60056 Theory Probab. Math. Stat. 49, 147-150 (1994); translation from Teor. Jmovirn. Mat. Stat. 49, 207-211 (1993). Summary: A limit theorem is proved for multiplicatively normalized intersections of random semi-spaces of the form \(\{{\mathbf x}\in{\mathbf R}^d:{\mathbf x}\cdot\xi_i\leq |\xi_i|^2\}\), where \(\xi_i\), \(i\geq 1\), are independent identically distributed random vectors. For the limit closed random set \({\mathbf X}\) and any compact set \({\mathbf K}\) the probability \(P\{{\mathbf K}\subset{\mathbf X}\}\) and the mathematical expectation of the volume are found. Cited in 1 Document MSC: 60G55 Point processes (e.g., Poisson, Cox, Hawkes processes) 60F15 Strong limit theorems 60B10 Convergence of probability measures Keywords:multiplicatively normalized intersections of random semi-spaces; random set PDFBibTeX XMLCite \textit{I. S. Molchanov}, Theory Probab. Math. Stat. 49, 1 (1993; Zbl 0861.60056); translation from Teor. Jmovirn. Mat. Stat. 49, 207--211 (1993)