×

zbMATH — the first resource for mathematics

Cohomology of the complement of a free divisor. (English) Zbl 0862.32021
The authors give conditions on a divisor on a smooth complex manifold, which assure that the cohomology of its complement can be calculated by the logarithmic de Rham complex.

MSC:
32S20 Global theory of complex singularities; cohomological properties
32S25 Complex surface and hypersurface singularities
14F40 de Rham cohomology and algebraic geometry
52C35 Arrangements of points, flats, hyperplanes (aspects of discrete geometry)
58C25 Differentiable maps on manifolds
58K99 Theory of singularities and catastrophe theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] E. Brieskorn, Singular elements of semi-simple algebraic groups, Actes du Congrès International des Mathématiciens (Nice, 1970) Gauthier-Villars, Paris, 1971, pp. 279 – 284.
[2] Egbert Brieskorn, Sur les groupes de tresses [d’après V. I. Arnol\(^{\prime}\)d], Séminaire Bourbaki, 24ème année (1971/1972), Exp. No. 401, Springer, Berlin, 1973, pp. 21 – 44. Lecture Notes in Math., Vol. 317 (French).
[3] Robert Ephraim, Isosingular loci and the Cartesian product structure of complex analytic singularities, Trans. Amer. Math. Soc. 241 (1978), 357 – 371. · Zbl 0395.32006
[4] A. Grothendieck, On the de Rham cohomology of algebraic varieties, Inst. Hautes Études Sci. Publ. Math. 29 (1966), 95 – 103. · Zbl 0145.17602
[5] Robin Hartshorne, Local cohomology, A seminar given by A. Grothendieck, Harvard University, Fall, vol. 1961, Springer-Verlag, Berlin-New York, 1967. · Zbl 0237.14008
[6] E. J. N. Looijenga, Isolated singular points on complete intersections, London Mathematical Society Lecture Note Series, vol. 77, Cambridge University Press, Cambridge, 1984. · Zbl 0552.14002
[7] John N. Mather, Stability of \?^{\infty } mappings. III. Finitely determined mapgerms, Inst. Hautes Études Sci. Publ. Math. 35 (1968), 279 – 308. John N. Mather, Stability of \?^{\infty } mappings. IV. Classification of stable germs by \?-algebras, Inst. Hautes Études Sci. Publ. Math. 37 (1969), 223 – 248. John N. Mather, Stability of \?^{\infty } mappings. V. Transversality, Advances in Math. 4 (1970), 301 – 336 (1970). · Zbl 0207.54303
[8] John N. Mather, Stability of \?^{\infty } mappings. III. Finitely determined mapgerms, Inst. Hautes Études Sci. Publ. Math. 35 (1968), 279 – 308. John N. Mather, Stability of \?^{\infty } mappings. IV. Classification of stable germs by \?-algebras, Inst. Hautes Études Sci. Publ. Math. 37 (1969), 223 – 248. John N. Mather, Stability of \?^{\infty } mappings. V. Transversality, Advances in Math. 4 (1970), 301 – 336 (1970). · Zbl 0207.54303
[9] Bernd Wegner, Decktransformationen transnormaler Mannigfaltigkeiten, Manuscripta Math. 4 (1971), 179 – 199 (German, with English summary). · Zbl 0205.51603
[10] D. G. Northcott, Injective envelopes and inverse polynomials, J. London Math. Soc. (2) 8 (1974), 290 – 296. · Zbl 0284.13012
[11] Peter Orlik and Hiroaki Terao, Arrangements of hyperplanes, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 300, Springer-Verlag, Berlin, 1992. · Zbl 0757.55001
[12] Kyoji Saito, Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), no. 2, 265 – 291. · Zbl 0496.32007
[13] C. T. C. Wall, Finite determinacy of smooth map-germs, Bull. London Math. Soc. 13 (1981), no. 6, 481 – 539. · Zbl 0451.58009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.