zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Exact and explicit solitary wave solutions to some nonlinear equations. (English) Zbl 0862.35110
Summary: Exact and explicit solitary wave solutions are obtained for some physically interesting nonlinear evolutions and wave equations in physics and other fields by using a special transformation. These equations include the KdV-Burgers equation, the MKdV-Burgers equation, the combined KdV-MKdV equation, the Newell-Whitehead equation, the dissipative $\Phi^4$-model equation, the generalized Fisher equation, and the elastic-medium wave equation.

35Q53KdV-like (Korteweg-de Vries) equations
35Q51Soliton-like equations
35C05Solutions of PDE in closed form
Full Text: DOI
[1] Ablowitz, M. J., and Zeppetella, A. (1979).Bulletin of Mathematical Biology,41, 835. · Zbl 0423.35079
[2] Cariello, F., and Tabor, M. (1989),Physics D,39, 77. · Zbl 0687.35093 · doi:10.1016/0167-2789(89)90040-7
[3] Coffey, M. W. (1990).SIAM Journal of Applied Mathematics,50, 1580. · Zbl 0712.76025 · doi:10.1137/0150093
[4] Coffey, M. W. (1992).SIAM Journal of Applied Mathematics,52, 929. · Zbl 0758.70015 · doi:10.1137/0152053
[5] Drazin, P. G., and Johnson, R. S. (1989).Solitons: An Introduction, Cambridge University Press, Cambridge. · Zbl 0661.35001
[6] Hereman, W., and Takaoka, M. (1990).Journal of Physics A,23, 4805. · Zbl 0719.35085 · doi:10.1088/0305-4470/23/21/021
[7] Hereman, W., Banerjee, P. P., Korpel, A., Assanto, G., van Immerzeele, A., and Meerpoel, A. (1986).Journal of Physics A,19, 607. · Zbl 0621.35080 · doi:10.1088/0305-4470/19/5/016
[8] Huang, G. X., Lou, S. Y., and Dai, X. X. (1989).Physics Letters A,139, 373. · doi:10.1016/0375-9601(89)90580-X
[9] Lee, T. D (1988).Particle Physics and Introduction to Field Theory, Harwood Academic, London.
[10] Lou, S. Y. (1991).Journal of Physics A: Mathematical and General,24, L587.
[11] Lu, B. O., Xiu, B. Z., Pang, Z. L., and Jiang, X. F. (1993).Physics Letters A,175, 113. · doi:10.1016/0375-9601(93)90131-I
[12] Ma, W. X. (1993).Journal of Physics A: Mathematical and General,120, L17.
[13] Murray, J. D. (1989).Mathematical Biology, Springer, Berlin. · Zbl 0682.92001
[14] Nacci, M. C., and Clarkson, P. A. (1992).Physics Letters A,164, 49. · doi:10.1016/0375-9601(92)90904-Z
[15] Newell, A. C., and Moloney, J. V. (1992).Nonlinear Optics, Addison-Wesley, Redwood, California. · Zbl 1054.78001
[16] Sachdev, P. L. (1987).Nonlinear Diffusive Waves, Cambridge University Press, Cambridge. · Zbl 0624.35002
[17] Wang, X. Y. (1988).Physics Letters A,131, 277. · doi:10.1016/0375-9601(88)90027-8
[18] Wang, X. Y., Chu, Z. S., and Lu, Y. K. (1990).Journal of Physics A,23, 271. · Zbl 0708.35079 · doi:10.1088/0305-4470/23/3/011
[19] Yang, Z. J. (1994).Journal of Physics A: Mathematical and General,27, 2837. · Zbl 0837.35034 · doi:10.1088/0305-4470/27/8/021
[20] Yang, Z. J., Dunlap, R. A., and Geldart, D. J. W. (1994).International Journal of Theoretical Physics,33, 2057. · Zbl 0817.35108 · doi:10.1007/BF00675171