×

zbMATH — the first resource for mathematics

Lower semicontinuity of quasiconvex integrals. (English) Zbl 0862.49017
Summary: New lower semicontinuity results for quasiconvex integrals are established. In particular, under certain structure conditions and growth \(0\leq F(\xi)\leq C(1+|\xi|^q)\) the functional \(\int_{\Omega}F(\nabla u)dx\) is proved to be lower semicontinuous on \(W^{1,q}\) with respect to the weak convergence in \(W^{1,p}\), \(p\geq q-1\).

MSC:
49J45 Methods involving semicontinuity and convergence; relaxation
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Acerbi, E. and Dal Maso, G.: New lower semicontinuity results for polyconvex integrals case. Preprint SISSA, Trieste52/M (1993), · Zbl 0810.49014
[2] Ball, J. M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rat. Mech. Anal.63 (1977), 337–403. · Zbl 0368.73040
[3] Ball, J. M. and Murat, F.:W 1,p quasiconvexity and variational problems for multiple integrals. J. Funct. Anal.58 (1984), 225–253 · Zbl 0549.46019
[4] Carbone, L. and De Arcangelis, R.: Further results on {\(\Gamma\)}-convergence and lower semicontinuity of integral functionals depending on vector-valued functions. Richerche Mat.39 (1990), 99–129. · Zbl 0735.49008
[5] Celada, P. and Dal Maso, G.: Further remarks on the lower semicontinuity of polyconvex integrals. Ann. Inst. Henri Poincaré (to appear). · Zbl 0833.49013
[6] Dacorogna, B.: Direct Methods in the Calculus of Variations, Applied Math. Sciences 78, Springer-Verlag, 1989. · Zbl 0703.49001
[7] Dacorogna, B. and Marcellini, P.: Semicontinuité pour des intégrandes polyconvexes sans continuité des determinants. C. R. Acad. Sci. Paris Sér. I Math.311, 6 (1990), 393–396. · Zbl 0723.49007
[8] Dal Maso, G. and Sbordone, C.: Weak lower semicontinuity of polyconvex integrals: a borderline case. Preprint SISSA, Trieste,45/M (1993), · Zbl 0822.49010
[9] Federer, H.: Geometric measure theory, Springer-Verlag, Grundlehren, 1969. · Zbl 0176.00801
[10] Fonseca, I. and Malý, J.: Relaxation of Multiple Integrals in Sobolev Spaces below the growth exponent for the energy density. In preparation. · Zbl 0868.49011
[11] Fonseca, I. and Malý, J.: Relaxation of Multiple Integrals under Constraints. In preparation. · Zbl 0868.49011
[12] Fonseca, I. and Marcellini, P.: Relaxation of multiple integrals in subcritical Sobolev spaces. Preprint 1994. · Zbl 0915.49011
[13] Fonseca, I. and Müller, S.: Quasiconvex integrands and lower semicontunuity inL 1. SIAM J. Math. Anal. (to appear).
[14] Fusco, N. and Hutchinson, J. E.: A direct proof for lower semicontinuity of polyconvex functionals. Preprint 1994. · Zbl 0874.49015
[15] Gangbo, W.: On the weak lower semicontinuity of energies with polyconvex integrands. Preprint C.M.U., Pittsburgh 1992. · Zbl 0829.49011
[16] Giaquinta, M., Modica, G. and Souček, J.: Cartesian currents and variational problems for mappings into spheres. Ann. Sc. Norm. Sup. Pisa16 (1989), 393–485. · Zbl 0713.49014
[17] Malý, J.: Weak lower semicontinuity of polyconvex integrals. Proc. Royal Soc. Edinburgh123A, 681–691. (1993), · Zbl 0813.49017
[18] Malý, J. Weak lower semicontinuity of polyconvex and quasiconvex integrals. Vortragsreihe 1993 (to appear), Bonn. · Zbl 0813.49017
[19] Marcellini, P.: Approximation of quasiconvex functions and lower semicontinuity of multiple integrals. Manus. Math.51 (1985), 1–28. · Zbl 0573.49010
[20] Marcellini, P.: On the definition and the lower semicontinuity of certain quasiconvex integrals. Ann. Inst. H. Poincaré, Analyse non Linéaire3 (1986), 391–409. · Zbl 0609.49009
[21] Meyers, N. G.: Quasiconvexity and the semicontinuity of multiple variational integrals of any order. Trans. Amer. Math. Soc.119 (1965), 125–149. · Zbl 0166.38501
[22] Morrey, C. B.: Quasiconvexity and the semicontinuity of multiple integrals. Pacific J. Math.,2 (1952), 25–53. · Zbl 0046.10803
[23] –: Multiple integrals in the Calculus of Variations, Springer, Berlin, 1966. · Zbl 0142.38701
[24] Müller, S.: Weak continuity of determinants and nonlinear elasticity. C. R. Acad. Sci. Paris307 (1988), 501–506. · Zbl 0679.34051
[25] Müller, S., Tang, Q. and Yan, B.S.: On a new class of elastic deformations not allowing for cavitation. Preprint 255, University of Bonn 1992. · Zbl 0863.49002
[26] Šverák, V.: Regularity properties of deformations with finite energy. Arch. Rat. Mech. Anal.100 (1988), 105–127. · Zbl 0659.73038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.