Cannarsa, P.; Frankowska, H. Value function and optimality condition for semilinear control problems. II: Parabolic case. (English) Zbl 0862.49021 Appl. Math. Optimization 33, No. 1, 1-33 (1996). [For Part I see Appl. Math. Optimization 26, No. 2, 139-169 (1992; Zbl 0765.49001)].Authors’ abstract: “In this paper we continue to study properties of the value function and of optimal solutions of a semilinear Mayer problem in infinite dimensions. Applications concern systems governed by a state equation of parabolic type. In particular, the issues of the joint Lipschitz continuity and semiconcavity of the value function are treated in order to investigate the differentiability of the value function along optimal trajectories”. Reviewer: D.Franke (Hamburg) Cited in 7 Documents MSC: 49K20 Optimality conditions for problems involving partial differential equations 49L20 Dynamic programming in optimal control and differential games 47B44 Linear accretive operators, dissipative operators, etc. 49J52 Nonsmooth analysis 47D03 Groups and semigroups of linear operators Keywords:optimal control; analytic semigroups; distributed parameter systems; value function; semilinear Mayer problem; Lipschitz continuity; semiconcavity Citations:Zbl 0765.49001 × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Barbu V, Da Prato G (1982) Hamilton-Jacobi equations in Hilbert spaces, Pitman, Boston · Zbl 0509.49017 [2] Cannarsa P (1989) Regularity properties of solutions to Hamilton-Jacobi equations in infinite dimensions and nonlinear optimal control. Differential and Integral Equations 2:479-493 · Zbl 0715.49026 [3] Cannarsa P, Da Prato G (1989) Some properties of the value function of nonlinear control problems in infinite dimensions. Proceedings of the COM-CON Conference (Zolesio JP ed), Montpellier, Lecture Notes in Control and Information Sciences, Vol 147, Springer-Verlag, Berlin, pp 235-247 · Zbl 0778.93040 [4] Cannarsa P, Frankowska H (1990) Quelques charactérisations des trajectoires optimales dans la théorie de controle. C R Acad Sci Paris Sér 1 310:179-182 [5] Cannarsa P, Frankowska H (1992) Value function and optimality conditions for semilinear control problems. Appl Math Optim 26:139-169 · Zbl 0765.49001 · doi:10.1007/BF01189028 [6] Cannarsa P, Frankowska H (1992) Some characterizations of optimal trajectories in control theory. SIAM J Control Optim 29:1322-1347 · Zbl 0744.49011 · doi:10.1137/0329068 [7] Cannarsa P, Gozzi F (1992) On the smoothness of the value function along optimal trajectories. Boundary Control and Boundary Variation (Zolesio JP ed), Lecture Notes in Control and Information Sciences, Vol 178, Springer-Verlag, Berlin · Zbl 0772.49018 [8] Cannarsa P, Soner HM (1987) On the singularities of the viscosity solutions to Hamilton-Jacobi-Bellman equations. Indiana Univ Math J 36:501-524 · Zbl 0612.70016 · doi:10.1512/iumj.1987.36.36028 [9] Clarke FH (1983) Optimization and Nonsmooth Analysis, Wiley, New York · Zbl 0582.49001 [10] Crandall MG, Evans LC, Lions PL (1984) Some properties of viscosity solutions of Hamilton-Jacobi equations. Trans Amer Math Soc 282:487-502 · Zbl 0543.35011 · doi:10.1090/S0002-9947-1984-0732102-X [11] Crandall MG, Lions PL (1983) Viscosity solutions of Hamilton-Jacobi equations. Trans Amer Math Soc 277:1-42 · Zbl 0599.35024 · doi:10.1090/S0002-9947-1983-0690039-8 [12] Crandall MG, Lions PL (1990) Viscosity solutions of Hamilton-Jacobi equations in infinite dimensions. IV. Hamiltonians with unbounded linear terms. J Funct Anal 90:237-283 · Zbl 0739.49016 · doi:10.1016/0022-1236(90)90084-X [13] Fleming WH (1969) The Cauchy problem for a nonlinear first order partial differential equation. J. Differential Equations 5:515-530 · Zbl 0172.13901 · doi:10.1016/0022-0396(69)90091-6 [14] Henry D (1981) Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, Vol 840, Springer-Verlag, Berlin · Zbl 0456.35001 [15] Ishii H (1992) Viscosity solutions for a class of Hamilton-Jacobi equations in Hilbert spaces. J Funct Anal 105:301-341 · Zbl 0753.70014 · doi:10.1016/0022-1236(92)90081-S [16] Lions PL (1982) Generalized Solutions of Hamilton-Jacobi Equations, Pitman, Boston · Zbl 0497.35001 [17] Lions JL, Magenes E (1968) Problèmes aux limites non homogènes et applications II, Dunod, Paris · Zbl 0165.10801 [18] Pazy A (1983) Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York · Zbl 0516.47023 [19] Preiss, D (1990) Differentiability of Lipschitz functions on Banach spaces. J Funct Anal 91:312-345 · Zbl 0711.46036 · doi:10.1016/0022-1236(90)90147-D [20] Soner HM (1986) Optimal control with state-space constraints. SIAM J Control Optim 24:522-561 · Zbl 0593.93016 · doi:10.1137/0324030 [21] Tataru D (to appear) Viscosity solutions of Hamilton-Jacobi equations with unbounded nonlinear terms. J Math Anal Appl [22] Zhou XY (1990) Maximum principle, dynamic programming and their connection in deterministic control. J Optim Theory Appl 65:363-373 · Zbl 0676.49024 · doi:10.1007/BF01102352 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.