Simplexity of the cube. (English) Zbl 0862.52005

This is a well-written exposition of the technique and results of the authors’ interesting interdisciplinary research aimed at describing triangulations of the unit cube in \(d\) dimensions for small \(d\).


52C17 Packing and covering in \(n\) dimensions (aspects of discrete geometry)
05C70 Edge subsets with special properties (factorization, matching, partitioning, covering and packing, etc.)
90C05 Linear programming
Full Text: DOI


[1] Böhm, J., Representations of minimal triangulations of the cube in dimension \(d\)⩽5, (Forschungsergebnisse (1988), Friedrich-Schiller-Universität: Friedrich-Schiller-Universität Jena), 1-16, N/88/24
[2] Böhm, J., Complete enumeration of all optimal vertex preserving triangulations of the 5-cube, (Forschungsergebnisse (1988), Friedrich-Schiller-Universität: Friedrich-Schiller-Universität Jena), 1-38, N/88/36
[3] Böhm, J., Some remarks on triangulating a \(d\)-cube, Beitr. Algebra Geometrie, 1, 195-218 (1989) · Zbl 0705.52002
[4] Brenner, J.; Cummings, L., The Hadamard maximum determinant problem, Amer. Math. Monthly, 79, 626-630 (1972) · Zbl 0249.15003
[5] Broadie, M. N.; Cottle, R. W., A note on triangulating the 5-cube, Discrete Math., 52, 39-49 (1984) · Zbl 0553.52005
[6] Cohn, J. H.E., On the value of determinants, (Proc. Amer. Math. Soc., 14 (1963)), 581-588 · Zbl 0129.26702
[7] Cottle, R. W., Minimal triangulation of the 4-cube, Discrete Math., 40, 25-29 (1982) · Zbl 0483.52005
[8] Croft, H. T.; Falconer, K. J.; Guy, R. K., Unsolved Problems in Geometry (1991), Springer: Springer New York · Zbl 0748.52001
[9] Haiman, H., A simple and relatively efficient triangulation of the \(n\)-cube, Discrete Comput. Geom., 6, 287-289 (1991) · Zbl 0727.68044
[10] Hudelson, M.; Klee, V.; Larman, D., Largest \(j\)-simplices in \(d\)-cubes: the Hadamard maximum determinant problem and some of its relatives (1994), University of Washington: University of Washington Seattle, WA, in preparation
[11] Hughes, R. B., Minimum-cardinality triangulations of the \(d\)-cube for \(d = 5\) and \(d = 6\), Discrete Math., 118, 75-118 (1993) · Zbl 0783.52010
[12] Hughes, R. B., Lower bounds on cube simplexity, Discrete Math., 133, 123-138 (1994) · Zbl 0822.90101
[13] Hughes, R. B.; Anderson, M. R., A triangulation of the 6-cube with 308 simplices, Discrete Math., 117, 253-256 (1993) · Zbl 0784.52012
[14] Lee, C. W., Triangulating the \(d\)-cube, Discrete geometry and convexity, (Goodman, J. E.; etal., Ann. New York Acad. Sci., Vol. 440 (1985)), 205-211
[15] Mara, P. S., Triangulations of the cube, J. Combin. Theory Ser. A, 20, 170-177 (1976) · Zbl 0341.50001
[16] Sallee, J. F., A triangulation of the \(n\)-cube, Discrete Math., 40, 81-86 (1982) · Zbl 0483.52003
[17] Sallee, J. F., A note on minimal triangulations of an \(n\)-cube, Discrete Appl. Math., 4, 211-215 (1982) · Zbl 0489.52006
[18] Sallee, J. F., The middle-cut triangulations of the \(n\)-cube, SIAM J. Algebraic Discrete Methods, 5, 407-419 (1984) · Zbl 0543.52004
[19] Smith, W. D., Studies in Computational Geometry (motivated by mesh generation), (Ph.D. Thesis (1989), Princeton University, Applied Math: Princeton University, Applied Math Princeton, NJ)
[20] Todd, M. J., The Computation of Fixed Points and Applications, (Lecture Notes in Economics and Mathematical Systems, Vol. 124 (1976), Springer: Springer Berlin) · Zbl 0327.90018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.