zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Fixed-design regression for linear time series. (English) Zbl 0862.62069
Summary: This investigation is concerned with recovering a regression function $g(x_i)$ on the basis of noisy observations taken at uniformly spaced design points $x_i$. It is presumed that the corresponding observations are corrupted by additive dependent noise, and that the noise is, in fact, induced by a general linear process in which the summand law can be discrete, as well as continuously distributed. Discreteness induces a complication because such noise is not known to be strong mixing, the postulate by which regression estimates are often shown to be asymptotically normal. In fact, as cited, there are processes of this character which have been proven not to be strong mixing. The main analytic result of this study is that, in general circumstances which include the non-strong mixing example, the smoothers we propose are asymptotically normal. Some motivation is offered, and a simple illustrative example calculation concludes this investigation. The innovative elements of this work, mainly, consist of encompassing models with discrete noise, important in practical applications, and in dispensing with mixing assumptions. The ensuing mathematical difficulties are overcome by sharpening standard arguments.

MSC:
62M10Time series, auto-correlation, regression, etc. (statistics)
62G07Density estimation
62J02General nonlinear regression
WorldCat.org
Full Text: DOI
References:
[1] ANDREWS, D. W. K. 1984. Non-strong mixing autoregressive processes. J. Appl. Probab. 21 930 934. Z. JSTOR: · Zbl 0552.60049 · doi:10.2307/3213710 · http://links.jstor.org/sici?sici=0021-9002%28198412%2921%3A4%3C930%3ANMAP%3E2.0.CO%3B2-X&origin=euclid
[2] ATHREy A, K. B. and PANTULA, S. G. 1986. Mixing properties of Harris chains and autoregressive processes. J. Appl. Probab. 23 880 892. Z. JSTOR: · Zbl 0623.60087 · doi:10.2307/3214462 · http://links.jstor.org/sici?sici=0021-9002%28198612%2923%3A4%3C880%3AMPOHCA%3E2.0.CO%3B2-8&origin=euclid
[3] BARTLETT, M. S. 1955. An Introduction to Stochastic Processes and Special References to Methods and Applications, 1st ed. Cambridge Univ. Press, London. · Zbl 0068.11801
[4] BOENTE, G. and FRAIMAN, R. 1990. Asy mptotic distribution of robust estimators for nonparametric models from noisy processes. Ann. Statist. 18 891 906. Z. · Zbl 0703.62025 · doi:10.1214/aos/1176347631
[5] BOX, G. E. P. and JENKINS, G. M. 1970. Time Series Analy sis Forecasting and Control. Holden-Day, San Francisco.Z.
[6] BROCKWELL, P. J. and DAVIS, R. A. 1987. Time Series: Theory and Methods. Springer, New York. Z. · Zbl 0604.62083
[7] BURMAN, P. 1991. Regression function estimation from dependent observations. J. Multivariate Anal. 36 263 279. Z. · Zbl 0717.62034 · doi:10.1016/0047-259X(91)90061-6
[8] CHU, C. K. and MARRON, S. 1991. Comparison of two bandwidth selectors with dependent errors. Ann. Statist. 19 1906 1918. Z. · Zbl 0738.62042 · doi:10.1214/aos/1176348377
[9] GASSER, T. and MULLER, H. G. 1979. Kernel estimation of regression function. In Smoothing \" Techniques for Curve Estimation. Lecture Notes in Math. 747 23 68. Springer, Berlin. Z. · doi:10.1007/BFb0098489
[10] GEORGIEV, A. A. 1988. Consistent nonparametric multiple regression. The fixed design case. J. Multivariate Anal. 25 100 110. Z. · Zbl 0637.62044 · doi:10.1016/0047-259X(88)90155-8
[11] GEORGIEV, A. A. and GREBLICKI, W. 1986. Nonparametric function recovering from noisy observations. J. Statist. Plann. Inference 13 1 14. Z. · Zbl 0596.62041 · doi:10.1016/0378-3758(86)90114-X
[12] GORDIN, M. I. 1969. The central limit theorem for stationary processes. Soviet Math. Dokl. 10 1174 1176. Z. · Zbl 0212.50005
[13] GORODETSKII, V. V. 1977. On the strong mixing property for linear sequences. Theory Probab. Appl. 22 411 413. Z. · Zbl 0377.60046 · doi:10.1137/1122049
[14] HALL, P. and HEy DE, C. C. 1980. Martingale Limit Theory and Its Application. Academic Press, New York. Z. · Zbl 0462.60045
[15] HARDLE, W. and TUAN, D. P. 1986. Some theory on M-smoothing of time series. J. Time Ser. Änal. 7 191 204. Z. · Zbl 0607.62116 · doi:10.1111/j.1467-9892.1986.tb00502.x
[16] HELLAND, I. S. 1982. Central limit theorems for martingales with discrete or continuous time. Scand. J. Statist. 9 79 93. Z. · Zbl 0486.60023
[17] HESSE, C. H. 1990. A Bahadur-ty pe representation for empirical quantiles for a large class of stationary, possibly infinite-variance linear processes. Ann. Statist. 18 188 202. Z. · Zbl 0712.62042 · doi:10.1214/aos/1176347746
[18] PHAM, D. T. 1986. The mixing property of bilinear and generalized random coefficient autoregressive models. Stochastic Process. Appl. 23 291 300. Z. · Zbl 0614.60062 · doi:10.1016/0304-4149(86)90042-6
[19] PHAM, D. T. and TRAN, L. T. 1985. Some strong mixing properties of time series models. Stochastic Process. Appl. 19 297 303. Z. · Zbl 0564.62068 · doi:10.1016/0304-4149(85)90031-6
[20] PRIESTLEY, M. B. 1981. Spectral Analy sis and Time Series. Academic Press, New York. Z.
[21] PRIESTLEY, M. B. and CHAO, M. T. 1972. Nonparametric function fitting. J. Roy. Statist. Soc. Ser. B 34 385 392. Z. JSTOR: · Zbl 0263.62044 · http://links.jstor.org/sici?sici=0035-9246%281972%2934%3A3%3C385%3ANFF%3E2.0.CO%3B2-D&origin=euclid
[22] ROBINSON, P. M. 1983. Nonparametric estimators for time series. J. Time Ser. Anal. 4 185 207. Z. · Zbl 0544.62082 · doi:10.1111/j.1467-9892.1983.tb00368.x
[23] ROBINSON, P. M. 1987. Time series residuals with application to probability density estimation. J. Time Ser. Anal. 8 329 344. Z. · Zbl 0625.62071 · doi:10.1111/j.1467-9892.1987.tb00445.x
[24] ROSENBLATT, M. 1985. Stationary Sequences and Random Fields. Birkhauser, Boston. \" Z. · Zbl 0597.62095
[25] ROUSSAS, G. G. and TRAN, L. T. 1992. Asy mptotic normality of the recursive kernel regression estimates under dependence conditions, and time series. Ann. Statist. 20 98 120. Z. · Zbl 0925.62171 · doi:10.1214/aos/1176348514
[26] ROUSSAS, G. G., TRAN, L. T. and IOANNIDES, D. A. 1992. Fixed design regression for time series: asy mptotic normality. J. Multivariate Anal. 40 262 291. Z. · Zbl 0764.62073 · doi:10.1016/0047-259X(92)90026-C
[27] STOUT, W. F. 1974. Almost Sure Convergence. Academic Press, New York. Z. · Zbl 0321.60022
[28] STOy ANOV, J. M. and ROBINSON, P. M. 1991. Semiparametric and nonparametric inference from irregular observations on continuous time stochastic processes. In Nonparametric Z. Functional Estimation and Related Topics G. Roussas, ed.. NATO ASI Series 335 553 557. Kluwer, Dordrecht. Z. · Zbl 0727.62080
[29] TRAN, L. T. 1993. Nonparametric function estimation for time series by local average estimators. Ann. Statist. 21 1040 1057. Z. · Zbl 0790.62037 · doi:10.1214/aos/1176349163
[30] TRUONG, Y. K. 1991. Nonparametric curve estimation with time series errors. J. Statist. Plann. Inference 28 167 183.Z. · Zbl 0734.62047 · doi:10.1016/0378-3758(91)90024-9
[31] TRUONG, Y. K. and STONE, C. J. 1992. Nonparametric function estimation involving time series. Ann. Statist. 20 77 97. · Zbl 0764.62038 · doi:10.1214/aos/1176348513
[32] WHITE, H. and DOMOWITZ, I. 1984. Nonlinear regression with dependent observations. Econometrica 52 143 161. Z. JSTOR: · Zbl 0533.62055 · doi:10.2307/1911465 · http://links.jstor.org/sici?sici=0012-9682%28198401%2952%3A1%3C143%3ANRWDO%3E2.0.CO%3B2-1&origin=euclid
[33] WITHERS, C. S. 1981a. Conditions for linear processes to be strong mixing. Z. Wahrsch. Verw. Gebiete 57 479 480. Z. · Zbl 0465.60032 · doi:10.1007/BF01025869
[34] WITHERS, C. S. 1981b. Central limit theorems for dependent variables. I. Z. Wahrsch. Verw. Gebiete 57 509 534. · Zbl 0451.60027 · doi:10.1007/BF01025872
[35] BLOOMINGTON, INDIANA 47408 DAVIS, CALIFORNIA 95616 E-MAIL: tran@indiana.edu E-MAIL: ggroussas@ucdavis.edu TUCSON, ARIZONA 85721 FRANCE