×

zbMATH — the first resource for mathematics

Exact observability and exponential stability of infinite-dimensional bilinear systems. (English) Zbl 0862.93007
The paper contains results on stability and exact observability for a class of bilinear infinite-dimensional control systems. The class of systems under consideration contains examples which are of importance in chemical process engineering. By using results from the theory of linear evolution systems, it is shown that, for any given essentially bounded and essentially strictly positive control signal, any system in the class is exponentially stable and exactly observable.
Reviewer: H.Logemann (Bath)

MSC:
93B07 Observability
93C25 Control/observation systems in abstract spaces
93D20 Asymptotic stability in control theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] F. Celle, J. P. Gauthier, D. Kazakos, and G. Sallet, Synthesis of nonlinear observers: a harmonic analysis approach,Math. Systems Theory,22 (1989), 291-322. · Zbl 0691.93005 · doi:10.1007/BF02088304
[2] R. F. Curtain and A. J. Pritchard,Infinite-Dimensional Linear Systems Theory, Springer-Verlag, New York, 1978. · Zbl 0389.93001
[3] M. Fliess, Some remarks on gain scheduling,Proceedings of the European Control Conference, Grenoble, 1991, pp. 177-181.
[4] J. C. Friedly,Dynamic Behavior of Processes, Prentice-Hall, Englewood Cliffs, New Jersey, 1972.
[5] J. P. Gauthier and C. Z. Xu, H?-control of a distributed parameter system with nonminimum phase,Internat. J. Control,53(1) (1991), 45-79. · Zbl 0724.93028 · doi:10.1080/00207179108953609
[6] V. Mikhailov,Equations aux dérivées partielles, MIR, Moscow (French translation), 1980.
[7] A. Pazy,Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York, 1983. · Zbl 0516.47023
[8] J. Rauch and M. Taylor, Exponential decay of solutions to hyperbolic equations in bounded domain,Indiana Univ. Math. J.,24(1) (1974), 79-86. · Zbl 0281.35012 · doi:10.1512/iumj.1974.24.24004
[9] P. A. Raviart and J. M. Thomas,Introduction à l’analyse numérique des équations aux dérivées partielles, Masson, Paris, 1988.
[10] D. L. Russell, Control theory of hyperbolic equations related to certain questions in harmonic analysis and spectral theory,J. Math. Anal. Appl.,40, (1972), 336-368. · Zbl 0244.93025 · doi:10.1016/0022-247X(72)90055-8
[11] D. L. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions,Siam Rev.,20(4) (1978), 639-739. · Zbl 0397.93001 · doi:10.1137/1020095
[12] D. L. Russell and G. Weiss, A general necessary condition for exact observability,SIAM J. Control Optim.,32(1) (1994), 1-23. · Zbl 0795.93023 · doi:10.1137/S036301299119795X
[13] E. D. Sontag,Mathematical Control Theory: Deterministic Finite-Dimensional Systems, Texts in Applied Mathematics, vol. 6, Springer-Verlag, New York, 1990. · Zbl 0703.93001
[14] C. Z. Xu, Exponential stability of a class of infinite-dimensional time-varying linear systems,Proceedings of the International Conference on Control and Information, Hong Kong, June 5-9, 1995, pp. 407-411.
[15] C. Z. Xu and J. P. Gauthier, Analyse et commande d’un échangeur thermique à contrecourant,RAIRO APPII,25 (1991), 377-396. · Zbl 0741.93064
[16] C. Z. Xu, J. P. Gauthier, and I. Kupka, Exponential stability of the heat exchanger equation,Proceedings of the European Control Conference, Groningen, 1993, pp. 303-307.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.