zbMATH — the first resource for mathematics

A pencil approach to high gain feedback and generalized state space systems. (English) Zbl 0862.93033
In this article, limits of generalized state space systems under high-gain feedback are characterized. More precisely, for systems of the kind \[ E\dot x(t)=Ax(t)+Bu(t) \] conditions are given under which a given system can be obtained as a limit of a sequence of systems which are feedback equivalent to some system of the same structure.
Here the limit and the feedback equivalence (either strong or state restricted) are defined in terms of the pencil \([sE-A,B]\) of the system matrices.
After defining these concepts, a theorem on orbit closures of singular matrix pencils proved by the authors [J. Pure Appl. Algebra 81, No. 2, 117–137 (1992, Zbl 0754.15007)] is used in order to characterize these limits. Thus an if-and-only-if characterization in terms of closures of orbits of pencils under the action of full feedback groups is obtained.
Finally, some system theoretic applications of this result are given.

93C05 Linear systems in control theory
93B52 Feedback control
93B25 Algebraic methods
15A22 Matrix pencils
Full Text: Link EuDML
[1] P. Brunovský: A classification of linear controllable systems. Kybernetika 3 (1970), 173-187. · Zbl 0199.48202
[2] J. D. Cobb: Controllability, observability, and duality in singular systems. IEEE Trans. Automat. Control AC-29 (1984), 1076-1082.
[3] C. DeConcini D. Eisenbud, C. Procesi: Young diagrams and determinantal varieties. Invent. Math. 56(1980), 129-165. · Zbl 0435.14015
[4] E. R. Gantmacher: The Theory of Matrices. Volume 1 and 2. Chelsea, New York 1959. · Zbl 0085.01001
[5] H. Gliising-Luerlien: A feedback canonical form for singular systems. Internat. J. Control 52 (1990), 347-376.
[6] H. Gliising-LuerBen: Gruppenaktionen in der Theorie singularer Systeme. Ph.D. Thesis, Institut fur Dynamische Systeme, Universitat Bremen, 1991.
[7] D. Hinrichsen, J. O’Halloran: A complete characterization of orbit closures of controllable singular systems under restricted system equivalence. SIAM J. Control Optim. 25 (1990), 602-623. · Zbl 0701.93017
[8] D. Hinrichsen, J. O’Halloran: The orbit closure problem for matrix pencils: Necessary conditions and an application to high gain feedback. New Trends in Systems Theory, Birkhauser 1991, pp. 388-392. · Zbl 0736.93032
[9] D. Hinrichsen, J. O’Halloran: Orbit closures of matrix pencils and system limits under high gain feedback. Proc. 29th IEEE Conference on Decision and Control, Honolulu 1990, pp. 55-60.
[10] D. Hinrichsen, J. O’Halloran: A note on the degeneration of systems under pencil equivalence. Proc. 30th IEEE Conference on Decision and Control, Brighton 1991, pp. 1431-1432.
[11] D. Hinrichsen, J. O’Halloran: Orbit closure of singular matrix pencils. J. Pure Appl. Algebra 81 (1992), 117-137. · Zbl 0754.15007
[12] D. Hinrichsen, J. O’Halloran: A note on the orbit closure problem for the generalized feedback group. Systems and Networks: Mathematical Theory and Applications, Vol. II - Invited and Contributed Papers, Akademie-Verlag, Berlin 1994, pp. 221-224. · Zbl 0925.93401
[13] R. E. Kalman: Kronecker invariants and feedback. Ordinary Differential Equations, Proc. Conf. Ordinary Differential Equations (Weiss, Washington 1971. · Zbl 0308.93008
[14] L. Kronecker: Algebraische Reduktion der Schaaren bilinearer Formen. S.-B. Akad. (1890), pp. 763-776.
[15] V. Kučera, P. Zagalak: Fundamental theorem of state feedback for singular systems. Automatica 24 (1988), 653-658. · Zbl 0661.93033
[16] F. L. Lewis, K. Ozcaldiran: Reachability and controllability for descriptor systems. Proceedings of the 27th Midwestern Symposium on Circuits and Systems, Morgantown, West Virginia 1984, pp. 690-695.
[17] J. J. Loiseau K. Ozcaldiran M. Malabre, N. Karcanias: Feedback canonical forms of singular systems. Kybernetika 27 (1991), 289-305. · Zbl 0767.93007
[18] J. O’Halloran: Feedback equivalence of constant linear systems. Systems Control Lett. 5 (1987), 241-246. · Zbl 0628.93007
[19] K. Ozcaldiran, F. L. Lewis: On the regularizability of singular systems. IEEE Trans. Automat. Control 50 (1990), 1156-1160. · Zbl 0724.93011
[20] A. C. Pugh G. E. Hay ton, P. Fretwell: Transformation of matrix pencils and implications in linear systems theory. Internat. J. Control 45 (1987), 529-548. · Zbl 0623.93013
[21] H. H. Rosenbrock: State Space and Multivariable Theory. Nelson-Wiley, New York 1970. · Zbl 0246.93010
[22] H. H. Rosenbrock: Structural properties of linear dynamical systems. Internat. J. Control 20 (1974), 177-189. · Zbl 0285.93019
[23] G.C. Verghese B. C. Levy, T. Kailath: A generalized state-space for singular systems. IEEE Trans. Automat. Control AC-26 (1981), 811-830.
[24] K. Weierstrass: Zur Theorie der bilinearen und quadratischen Formen. Monatsh. Akad. Wiss. (1867), 310-338. · JFM 01.0054.04
[25] J. C. Willems: Paradigms and puzzles in the theory of dynamical systems. IEEE Trans. Automat. Control 56 (1991), 259-294. · Zbl 0737.93004
[26] W. M. Wonham: Linear Multivariable Control: A Geometric Approach. Second edition. Springer-Verlag, Heidelberg 1979. · Zbl 0424.93001
[27] E. L. Yip, R. F. Sincovic: Solvability, controllability, and observability of continuous descriptor systems. IEEE Trans. Automat. Control AC-26 (1981), 702-707. · Zbl 0482.93013
[28] K. D. Young P. V. Kokotovic, and V.I. Utkin: A singular perturbation analysis of high-gain feedback systems. IEEE Trans. Automat. Control AC-22 (1977), 931-937. · Zbl 0382.49029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.