×

zbMATH — the first resource for mathematics

Abelian varieties and Galois module structure in global function fields. (English) Zbl 0863.11078
This paper gives a function field analogue of the work of M. J. Taylor on the Galois module structure of certain Kummer orders associated to points on abelian varieties over number fields. A condition in terms of the point is given which implies that the Galois module is not free. Moreover a geometric interpretation of the construction is given. This is used to show how the zeta-function of the abelian variety gives precise information on the question of which modules arise in this way.

MSC:
11R33 Integral representations related to algebraic numbers; Galois module structure of rings of integers
14K15 Arithmetic ground fields for abelian varieties
11G10 Abelian varieties of dimension \(> 1\)
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] [A] A. Agboola, ’Iwasawa theory of elliptic curves and Galois module structure of rings of integers’,Duke Math Journal. 71, 441–463 (1993). · Zbl 0802.11051 · doi:10.1215/S0012-7094-93-07118-9
[2] [AT] A. Agboola, M. J. Taylor, ’Class invariants of Mordell-Weil groups’,J. reine angew. Math. 447, 23–61, (1994). · Zbl 0799.11049 · doi:10.1515/crll.1994.447.23
[3] [C1] R. J. Chapman, ’Galois module structure in global function fields’, Ph.D. Thesis, Faculty of Technology, University of Manchester, 1988.
[4] [C2] R. J. Chapman, ’Classgroups of sheaves of locally free modules over global function fields’. In:The Arithmetic of Function Fields, eds D. Goss, D. R. Hayes and M. I. Rosen, Walter de Gruyter, Berlin, 1992.
[5] [C3] R. J. Chapman, ’Kummer theory and Galois module structure in global function fields,’Math. Z. 108, 375–388, (1991). · Zbl 0736.11067 · doi:10.1007/BF02571534
[6] [CN-S] Ph. Cassou-Noguès, A. Srivastav, ’On Taylor’s conjecture for Kummer orders’,Séminaire de Théorie des Nombres, Bordeaux 2, 349–363, (1990). · Zbl 0726.11038
[7] [CN-T] Ph. Cassou-Noguès, M. J. Taylor,Elliptic functions and rings of integers, Birkhauser, Boston, (1987). · Zbl 0621.12012
[8] [CR] C. W. Curtis and I. Reiner,Methods of representation theory Vol. 1, Wiley 1981.
[9] [F] A. Fröhlich,Galois module structure of algebraic integers. Springer Verlag, New York, 1983. · Zbl 0501.12012
[10] [H] R. Hartshorne,Algebraic Geometry, Springer Verlag, New York, 1977.
[11] [L] S. Lang, ’Algebraic groups over finite fields’,American J. of Math. 78, 555–563, (1956). · Zbl 0073.37901 · doi:10.2307/2372673
[12] [M] D. Mumford,Abelian varieties, Oxford University Press, Oxford, 1974. · Zbl 0326.14012
[13] [ST] A. Srivastav and M. J. Taylor, ’Elliptic curves with complex multiplication and Galois module structure’Inv. Math. 99, 165–184, (1990). · Zbl 0705.14031 · doi:10.1007/BF01234415
[14] [Ta] J. Tate, ’Endomorphisms of abelian varieties over finite fields’,Inv. Math. 2, 134–144, (1966). · Zbl 0147.20303 · doi:10.1007/BF01404549
[15] [T1] M. J. Taylor, ’Mordell-Weil groups and the Galois module structure of rings of integers,’Ill. J. Math. 32, 428–452, (1988). · Zbl 0631.14033
[16] [T2] M. J. Taylor, ’On Fröhlich’s conjecture for rings of integers of tame extension’,Invent. Math.,63, 41–79, (1981). · Zbl 0469.12003 · doi:10.1007/BF01389193
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.