Müller, S.; Qi, Tang; Yan, B. S. On a new class of elastic deformations not allowing for cavitation. (English) Zbl 0863.49002 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 11, No. 2, 217-243 (1994). The divergence identity \[ \partial_j\{(g^i\circ u)(\text{adj }Du)^j_i\}= (\text{div }g)\circ\text{det }Du \] is proved under weak assumptions. Also, an integrability result for \(\text{det }Du\) is proved. As an application, a degree formula is proved in the class \(A_{p,q}(\Omega)\). As a further application, the existence of an absolutely continuous minimizer of \[ I(u)=\int_\Omega W(x,u,Du)dx \] is proved if \(W\) is polyconvex and satisfies the inequality \(W(x,u,F)\geq a(|F|^p+|\text{adj }F|^q)\) with \(p\geq 2\) and \(q\geq 3/2\). Reviewer: M.Brokate (Kaiserslautern) Cited in 1 ReviewCited in 79 Documents MSC: 49J10 Existence theories for free problems in two or more independent variables 26B10 Implicit function theorems, Jacobians, transformations with several variables 74B20 Nonlinear elasticity Keywords:nonlinear elasticity; divergence identity; degree formula; absolutely continuous minimizer PDFBibTeX XMLCite \textit{S. Müller} et al., Ann. Inst. Henri Poincaré, Anal. Non Linéaire 11, No. 2, 217--243 (1994; Zbl 0863.49002) Full Text: DOI Numdam EuDML References: [1] Adams, R., Sobolev Spaces (1975), Academic Press · Zbl 0314.46030 [2] Ball, J. M., Convexity Conditions and Existence Theorems in Nonlinear Elasticity, Arch. Rat. Mech. Anal., Vol. 63, 337-403 (1977) · Zbl 0368.73040 [3] Ball, J. M., Global Invertibility of Sobolev Functions and the Interpenetration of Matter, Proc. Roy. Soc. Edinburgh, Vol. 88A, 315-328 (1981) · Zbl 0478.46032 [4] Ball, J. M., Discontinuous Equilibrium Solutions and Cavitation in Non-Linear Elasticity, Phil. Trans. Roy. Soc. London, Vol. 306A, 557-612 (1982) · Zbl 0513.73020 [5] Ball, J. M.; Murat, F., \(W^{1, p}\)-Quasiconvexity and Variational Problems for Multiple Integrals, J. Fund. Anal., Vol. 58, 225-253 (1984) · Zbl 0549.46019 [6] Besicovitch, A. S., Parametric Surfaces, Bull. Am. Math. Soc., Vol. 56, 228-296 (1950) · Zbl 0038.20401 [7] Bojarski, B.; Iwaniec, T., Analytical Foundations of the Theory of Quasicon-formal Mappings in \(ℝ^n\), Ann. Acad. Sci. Fenn., Ser. A, Vol. 8, 257-324 (1983) · Zbl 0548.30016 [8] Brezis, H.; Fusco, N.; Sbordone, C., Integrability of the Jacobian of Orientation Preserving Mappings, J. Fund. Anal., Vol. 115, 425-431 (1993) · Zbl 0847.26012 [9] Ciarlet, P. G.; Necas, J., Injectivity and Self-Contact in Non-Linear Elasticity, Arch. Rat. Mech. Anal., Vol. 97, 171-188 (1987) · Zbl 0628.73043 [11] Dacorogna, B., Direct Methods in the Calculus of Variations (1989), Springer · Zbl 0703.49001 [13] Federer, H., Geometric Measure Theory (1969), Springer · Zbl 0176.00801 [14] Flanders, H., Differential Forms (1963), Academic Press · Zbl 0112.32003 [15] Gilbarg, D.; Trudinger, N. S., Elliptic Partial Differential Equations of Second Order (1983), Springer · Zbl 0691.35001 [16] Giusti, E., Minimal Surfaces and Functions of Bounded Variations (1984), Birkhäuser · Zbl 0545.49018 [19] Iwaniec, T.; Sbordone, C., On the Integrability of the Jacobian Under Minimal Hypotheses, Arch. Rat. Mech. Anal., Vol. 119, 129-143 (1992) · Zbl 0766.46016 [23] Marcus, M.; Mizel, V. J., Transformations by Functions in Sobolev Spaces and Lower Semicontinuity for Parametric Variational Problems, Bull. Amer Math. Soc., Vol. 79, 790-795 (1973) · Zbl 0275.49041 [24] Morrey, C. B., Multiple Integrals in the Calculus of Variations (1966), Springer · Zbl 0142.38701 [25] McShane, E. J., Integration (1947), Princeton Univ. press · Zbl 0323.60058 [26] Müller, S.; Surprising, A., Higher Integrability Property of Mappings with Positive Determinant, Bull. Amer Math. Soc., Vol. 21, 245-248 (1989) · Zbl 0689.49006 [27] Müller, S., Det = det. A Remark on the Distributional Determinant, C.R. Acad. Sci., Paris, Vol. 311, 13-17 (1990) · Zbl 0717.46033 [28] Müller, S., Higher Integrability of Determinants and Weak Convergence in \(L^1\), J. reine angew. Math., Vol. 412, 20-34 (1990) · Zbl 0713.49004 [29] Müller, S., A Counter-Example Concerning Formal Integration by Parts, C.R. Acad. Sci., Paris, Vol. 312, 45-49 (1991) · Zbl 0723.46028 [30] Müller, S., On the Singular Support of the Distributional Determinant, Ann. Inst. H. Poincaré, Analyse non linéaire, Vol. 10, 657-696 (1993) · Zbl 0792.46027 [33] Necas, J., Les méthodes directes en théorie des equations elliptiques (1967), Masson · Zbl 1225.35003 [34] Ogden, R. W., Large Deformation Isotropic Elasticity - On the Correlation of Theory and Experiment for Incompressible Rubber-Like Solids, Proc. Roy. Soc. London, Vol. A326, 565-584 (1972) · Zbl 0257.73034 [35] Reshetnyak, Y. G., On the Stability of Conformal Mappings in Multidimensional Spaces, Siberian Math. J., Vol. 8, 65-85 (1967) · Zbl 0172.37801 [36] Reshetnyak, Y. G., Space Mappings with Bounded Distorsion, Transl. Math. Monographs, Ann. Math. Soc., Vol. 73 (1989) · Zbl 0667.30018 [37] Rickman, S., Quasiregular Mappings (1993), Springer · Zbl 0796.30018 [38] Schwartz, J. T., Nonlinear Functional Analysis (1969), Acad. Press · Zbl 0203.14501 [39] Simon, L., Lectures on Geometric Measure Theory, Centre Math Anal. (1983), Australian National University · Zbl 0546.49019 [40] Šverák, V., Regularity Properties of Deformations with Finite Energy, Arch. Rat. Mech. Anal., Vol. 100, 105-127 (1988) · Zbl 0659.73038 [41] Tang, Q., Almost-Everywhere Injectivity in Nonlinear Elasticity, Proc. Roy. Soc. Edinburgh, Vol. 109A, 79-95 (1988) · Zbl 0656.73010 [42] Vodopyanov, S. K.; Goldstein, V. M., Quasiconformal Mappings and Spaces of Functions with Generalised First Derivatives, Siberian Math. J., Vol. 12, 515-531 (1977) [43] Zhang, K. W., Biting Theorems for Jacobians and their Applications, Ann. Inst. H. Poincaré, Analyse non linéaire, Vol. 7, 345-365 (1990) · Zbl 0717.49012 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.