Velikoivanenko, G. I. On the existence of exponential moments of norms of random elements from the spaces \(\text{sub}_ \varphi (\Omega)\). (English. Ukrainian original) Zbl 0863.60038 Theory Probab. Math. Stat. 50, 61-65 (1995); translation from Teor. Jmovirn. Mat. Stat. 50, 61-65 (1994). Summary: \((B,|\cdot|)\)-valued random elements \(X\) from the space \(\text{sub}_\varphi\), where \((B,|\cdot|)\) is a Banach space, are considered. The exponential integrability of a random vector \(X\), that is, the belonging of the random variable \(|X|\) to the Orlicz space generated by the function \(u(x)=\text{exp}\{\varphi^*(x)\}-1\) in the case \(B={\mathbf L}_p\), is demonstrated. MSC: 60G15 Gaussian processes 60G17 Sample path properties 62E17 Approximations to statistical distributions (nonasymptotic) Keywords:exponential integrability; Orlicz space PDFBibTeX XMLCite \textit{G. I. Velikoivanenko}, Theory Probab. Math. Stat. 50, 1 (1994; Zbl 0863.60038); translation from Teor. Jmovirn. Mat. Stat. 50, 61--65 (1994)