×

zbMATH — the first resource for mathematics

Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations. (English) Zbl 0863.76016
Summary: Fluid dynamical problems are often conceptualized in unbounded domains. However, most methods of numerical simulation then require a truncation of the conceptual domain to a bounded one, thereby introducing artificial boundaries. Here we analyse our experience in choosing artificial boundary conditions implicity through the choice of variational formulations. We deal particularly with a class of problems that involve the prescription of pressure drops and/or net flux conditions.

MSC:
76D05 Navier-Stokes equations for incompressible viscous fluids
35Q30 Navier-Stokes equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Gresho, Comput. Methods Appl. Mech. Eng. 87 pp 201– (1991) · Zbl 0760.76018
[2] Gresho, Int. j. numer. methods fluids 18 pp 983– (1994)
[3] Turek, Int. j. numer. methods fluids 18 pp 71– (1994) · Zbl 0794.76051
[4] Heywood, Acta Math. 136 pp 61– (1976) · Zbl 0347.76016
[5] ’Auxiliary flux and pressure conditions for Navier-Stokes problems’, in (ed.), Proc. IUTAM Symp., Paderborn, 1979, Lecture Notes in Mathematics, Vol. 771, Springer, Berlin, 1980, pp. 223-234.
[6] Solonnikov, Pacific J. Math. 93 pp 443– (1981) · Zbl 0413.35062
[7] Maslennikova, Sib. Mat. Zh. 22 pp 91– (1981)
[8] Sib. Math. J. 22 pp 399– (1982) · Zbl 0512.46036
[9] An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Vol. I, Linearized Steady Problems, Springer Tracts in Natural Philosophy, Vol. 38, Springer, Berlin, 1994.
[10] An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Vol. II, Nonlinear Steady Problems, Springer Tracts in Natural Philosophy, Vol. 39, Springer, Berlin, 1994.
[11] and , Finite Element Methods for Navier-Stokes Equations, Springer, Berlin, 1986. · Zbl 0585.65077
[12] Finite Element Methods for Fluids, Wiley, New York, 1983.
[13] Prodi, Rend. Sem. Mat. Univ. Padova 32 pp 374– (1962)
[14] Heywood, Indiana Univ. Math. J. 29 pp 639– (1980) · Zbl 0494.35077
[15] Heywood, SIAM J. Numer. Anal. 19 pp 275– (1982) · Zbl 0487.76035
[16] SIAM J. Numer. Anal. 23 pp 750– (1986) · Zbl 0611.76036
[17] SIAM J. Numer. Anal. 25 pp 489– (1988) · Zbl 0646.76036
[18] SIAM J. Numer. Anal. 27 pp 353– (1990) · Zbl 0694.76014
[19] and , Smooth solutions of the vector Burgers equation in nonsmooth domains, preprint 1995.
[20] Xie, Diff. Int. Eqn 8 pp 689– (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.