A \(P\)-type iterative learning controller for robust output tracking of nonlinear time-varying systems. (English) Zbl 0863.93040

The paper deals with the robust output tracking for a class of nonlinear systems of the form \(\dot x= f(x,u,t,d)\), \(y= h(x,t,d)\) where \(x,u,y\) and \(d\) are respectively the state, input, output and disturbance. The system is assumed to be strongly input-output decouplable and the purpose is to design a robust output tracking controller for the system. That is, given a desired output \(y_d\) (with corresponding input \(u_d)\), the authors propose an iterative controller of the form \(u_i= (1- \beta) u_{i-1} + K(y_d - y_i)\), \(i=1,2, \dots, K>0\), \(\beta \in (0,1)\). Under suitable assumptions, it is shown that the recursive controller defined in this way yields uniform boundedness of the system output towards the desired output. Simulation examples illustrate the proposed methodology.


93C10 Nonlinear systems in control theory
93C40 Adaptive control/observation systems
93C99 Model systems in control theory
93B51 Design techniques (robust design, computer-aided design, etc.)
Full Text: DOI


[1] DOI: 10.1002/rob.4620010203 · doi:10.1002/rob.4620010203
[2] ARIMOTO , S.,1990a,Robustness of learning control for robot manipulators.Proceedings of the IEEE International Conference on Robotics and Automation, Cincinnati, Ohio, U.S.A., pp.1528–1533; 1990b, Learning control theory for robotic motion.International Journal of Adaptive Control and Signal Processing,4, 543–564.
[3] ARIMOTO , S. , NANIWA , T. , and SUZUKI , H. , 1990 , Robustness of P-type learning control with a forgetting factor for robotic motions . Proceedings of the IEEE 29th Conference on Decision and Control , Honolulu , Hawaii , U.S.A. , pp. 2640 – 2645 .
[4] DOI: 10.1017/S0263574700000564 · doi:10.1017/S0263574700000564
[5] DESOER C. A., Feedback systems Input-Output Properties (1975) · Zbl 0327.93009
[6] DOI: 10.1109/9.109644 · doi:10.1109/9.109644
[7] HAUSER , J. E. 1987 , Learning control for a class of nonlinear systems . Proceedings of the IEEE 26th Conference on Decision and Control , Los Angeles , California , U.S.A. , pp. 859 – 860 .
[8] ISIDORI A., Nonlinear Control Systems, (1989) · Zbl 0693.93046
[9] DOI: 10.1109/21.87060 · doi:10.1109/21.87060
[10] DOI: 10.1016/0005-1098(92)90063-L · Zbl 0775.93092 · doi:10.1016/0005-1098(92)90063-L
[11] SAAB , S. S. , VOGT , W. G. , and MICKLE , M. H. , 1993 , Theory of P-type learning control with implication for the robot manipulator . Proceedings of the IEEE International Conference on Robotics and Automation , pp. 665 – 671 .
[12] DOI: 10.1016/0005-1098(91)90066-B · doi:10.1016/0005-1098(91)90066-B
[13] VIDYASAGAR M., Nonlinear System Anaysis (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.