×

zbMATH — the first resource for mathematics

General inequalities 7. 7th international conference, Oberwolfach, Germany, November 13–18, 1995. Proceedings. (English) Zbl 0864.00057
ISNM. International Series of Numerical Mathematics. 123. Basel: Birkhäuser. xii, 404 p. (1997).

Show indexed articles as search result.

The articles of this volume will be reviewed individually. The preceding conference (6, 1990) has been reviewed (see Zbl 0746.00079).
Indexed articles:
Drábek, Pavel; Heinig, Hans P.; Kufner, Alois, Higher dimensional Hardy inequality, 3-16 [Zbl 0883.26013]
Milovanović, Gradimir V., Integral inequalities for algebraic polynomials, 17-25 [Zbl 0894.26006]
Pearce, C. E. M.; Pečarić, J.; Varošanec, S., Inequalities of Gauß-Minkowski type, 27-37 [Zbl 0886.26015]
Saitoh, Saburou, Natural norm inequalities in nonlinear transforms, 39-52 [Zbl 0901.46022]
Bohner, Martin, Positive definiteness of discrete quadratic functionals, 55-60 [Zbl 0880.39002]
Goldberg, Moshe, Stable norms. – Examples and remarks, 61-64 [Zbl 0882.46007]
Furuta, Takayuki, Applications of order preserving operator inequalities to a generalized relative operator entropy, 65-76 [Zbl 0893.47009]
Pečarić, J.; Mond, B., The arithmetic mean – the geometric mean and related matrix inequalities, 77-91 [Zbl 0886.15019]
Ashbaugh, M. S.; Benguria, R. D.; Laugesen, R. S., Inequalities for the first eigenvalues of the clamped plate and buckling problems, 95-110 [Zbl 0893.73028]
Ashbaugh, Mark S.; Benguria, Rafael D., On the Payne-Pólya-Weinberger conjecture on the \(n\)-dimensional sphere, 111-128 [Zbl 0892.35114]
Brown, R. C.; Hinton, D. B., Norm eigenvalue bounds for some weighted Sturm-Liouville problems, 129-144 [Zbl 0883.34028]
Everitt, W. N.; Möller, M.; Zettl, A., Discontinuous dependence of the \(n\)-th Sturm-Liouville eigenvalue, 145-150 [Zbl 0886.34023]
Alzer, Horst, Note on Wirtinger’s inequality, 153-156 [Zbl 0888.26010]
Agarwal, Ravi P.; Pang, Peter Y. H., Opial-type inequalities involving higher order partial derivatives of two functions, 157-178 [Zbl 0883.26014]
Brown, B. M.; Dias, N. G. J., The HELP type integral inequalities for \(2n^{\text{th}}\) order differential operators, 179-192 [Zbl 0888.26012]
Marcus, Moshe, An estimate related to the Gagliardo-Nirenberg inequality, 193-200 [Zbl 0892.46032]
Mugelli, Francesco; Talenti, Giorgio, Sobolev inequalities in 2-dimensional hyberbolic space, 201-216 [Zbl 0888.26009]
Badora, Roman, On the separation with \(n\)-additive functions, 219-230 [Zbl 0883.43004]
Matkowski, Janusz; Rätz, Jürg, Convexity of power functions with respect to symmetric homogeneous means, 231-247 [Zbl 0883.26006]
Matkowski, Janusz; Rätz, Jürg, Convex functions with respect to an arbitrary mean, 249-258 [Zbl 0883.26007]
Páles, Zsolt, Separation by semidefinite bilinear forms, 259-267 [Zbl 0916.46003]
Aczél, János; Maksa, Gyula, Inequalities for selection probabilities, 271-284 [Zbl 0895.60019]
Ger, Roman, Delta-exponential mappings in Banach algebras, 285-296 [Zbl 0905.46030]
Rassias, Themistocles M., On a problem of S. M. Ulam and the asymptotic stability of the Cauchy functional equation with applications, 297-309 [Zbl 0880.39023]
Redheffer, Raymond M.; Volkmann, Peter, The functional equation \(f(x)+\max\{ f(y),f(-y)\} = \max\{ f(x+y),f(x-y)\}\), 311-318 [Zbl 0881.39014]
Brillard, Alain, Asymptotic analysis of nonlinear thin layers, 321-338 [Zbl 0880.49003]
Kawohl, Bernd, The opaque square and the opaque circle, 339-346 [Zbl 0907.68135]
Plum, Michael, Enclosure methods with existence proof for elliptic differential equations, 347-368 [Zbl 0880.65094]
Redheffer, Raymond M.; Volkmann, Peter, Weak persistence in Lotka-Volterra populations, 369-373 [Zbl 0882.92028]
Reichel, Wolfgang, Uniqueness for degenerate elliptic equations via Serrin’s sweeping principle, 375-387 [Zbl 0885.35043]
Kufner, Alois, Overdetermined Hardy inequalities, 391 [Zbl 0900.26035]
Love, E. R., A condition for monotony, 393 [Zbl 0900.26024]
Love, E. R., A conjectured inequality of T. J. Lyons, 395-399 [Zbl 0882.33001]
Rassias, Themistocles M., A theorem of Pommerenke and a conjecture of Erdős, 401-402 [Zbl 0900.30002]
Rassias, Themistocles M., Problems on finite sums decompositions of functions, 403-404 [Zbl 0900.26030]
MSC:
00B25 Proceedings of conferences of miscellaneous specific interest
26-06 Proceedings, conferences, collections, etc. pertaining to real functions
26Dxx Inequalities in real analysis
PDF BibTeX XML Cite