Connes, Alain Trace formula in noncommutative geometry and the Riemann hypothesis. (Formule de trace en géométrie non-commutative et hypothèse de Riemann.) (French) Zbl 0864.46042 C. R. Acad. Sci., Paris, Sér. I 323, No. 12, 1231-1236 (1996). Summary: We reduce the Riemann hypothesis for \(L\) functions on a global field \(k\) to the validity (not rigorously justified) of a trace formula for the action of the idele class group on the noncommutative space quotient of the adeles of \(k\) by the multiplicative group of \(k\). Cited in 3 ReviewsCited in 5 Documents MSC: 11M55 Relations with noncommutative geometry 11M26 Nonreal zeros of \(\zeta (s)\) and \(L(s, \chi)\); Riemann and other hypotheses 11R56 Adèle rings and groups 11F72 Spectral theory; trace formulas (e.g., that of Selberg) 58J50 Spectral problems; spectral geometry; scattering theory on manifolds 58J90 Applications of PDEs on manifolds Keywords:Riemann hypothesis; \(L\) functions; trace formula; idele class group; noncommutative space; adeles PDF BibTeX XML Cite \textit{A. Connes}, C. R. Acad. Sci., Paris, Sér. I 323, No. 12, 1231--1236 (1996; Zbl 0864.46042) OpenURL