×

Surfaces on Lie groups, on Lie algebras, and their integrability (with an appendix by Juan Carlos Alvarez Paiva). (English) Zbl 0864.53003

The method of the immersion of a 2-dimensional surface into a 3-dimensional Euclidean space is used to study surfaces in Lie groups and surfaces in Lie algebras. The \(n\)-dimensional generalization is also given. It is shown that a particular case of the general theory yields the characterization of an arbitrary surface in terms of \(2\times 2\) matrices. The use of Lie point groups provides an effective method for both finding as well as classifying integrable surfaces. It is proven that the integrable case of inverse harmonic \(H\) is the only case for which the Gauss-Codazzi equations admit a nontrivial Lie point group of transformations. In an appendix written by J. C. Alvarez it is shown the connection of the results obtained by the authors with Cartan’s method of moving frames.
Reviewer: G.Zet (Iaşi)

MSC:

53A05 Surfaces in Euclidean and related spaces
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Hopf, H.: Differential Geometry in the Large. Lect. Notes Math., Vol.1000, Berlin, Heidelberg, New York: Springer, 1983 · Zbl 0526.53002
[2] Wente, H. C.: Counterexample to a Conjecture of H. Hopf. Pac. J. Math.121, 193–243 (1986) · Zbl 0586.53003
[3] Abresch, U.: Constant Mean Curvature Tori in Terms of Elliptic Functions. J. Reine Angew. Math.394, 169–192 (1987) · Zbl 0597.53003
[4] Spruck, J.: The Elliptic Sinh-Gordon Equation and the Construction of Toroidal Soap Bubbles. In: Hildebrandt, S., Kinderlehrer, D., Miranda, M. (eds.) Calculus of Variations and Partial Differential Equations. Proceedings, Tronto 1986, Lect. Notes Math., Vol.1340, Berlin, Heidelberg, New York: Springer, 1988, pp. 273–301 · Zbl 0697.35044
[5] Walter, R.: Explicit Examples to the H-Problem of Heinz Hopf. Geom. Dedicate23, 187–213 (1987) · Zbl 0615.53050
[6] Wente, H.C.: Twisted Tori of Constant Mean Curvature in \(\mathbb{R}\)3. In: Tromba, A. (ed.) Seminar on New Results in Nonlinear Partial Differential Equations, Aspects Math. Vol.E10, Braunschweig Wiesbaden: Vieweg, 1987, pp. 1–36 · Zbl 0614.53006
[7] Pinkall, U., Sterling, I.: On the Classification of Constant Mean Curvature Tori. Ann. Math.130, 407–451 (1989) · Zbl 0683.53053
[8] Bobenko, A.I.: Integrable Surfaces. Funkts. Anal. Prilozh.24 (3), 68–69 (1990) · Zbl 0707.53009
[9] Abresch, U.: Old and New Periodic Solutions of the Sinh-Gordon Equation. In: Tromba, A. (ed.) Seminar on New Results in Nonlinear Partial Differential Equations, Aspects Math. Vol.E10, Braunschweig Wiesbaden: Vieweg, 1987, pp. 37–73 · Zbl 0635.35029
[10] Hitchin, N.S.: Harmonic Maps from a 2-Torus to the 3-Sphere. J. Diff. Geom.31, 627–710 (1990) · Zbl 0725.58010
[11] Bobenko, A.I.: Math. Ann.290, 209–245 (1991) · Zbl 0711.53007
[12] Levi, D., Sym, A.: Phys. Lett.149A, 381–387 (1990)
[13] Bobenko, A.I.: Surfaces in Terms of 2 by 2 Matrices, Old and New Integrable Cases. In: Harmonic Maps and Integrable Systems, Fordy, A.P., Wood, J.C. (eds.), Aspects of Mathematics, Vieweg, 1994 · Zbl 0841.53003
[14] Novikov, S.P.: (ed.) Theory of Solitons. New York: Consultants Bureau, 1984 · Zbl 0672.65049
[15] Ablowitz, M.J., Segur, H.: Solitons and the Inverse Scattering Transformation. SIAM Stud. Appl. Mat.4, Philadelphia: SIAM, 1981 · Zbl 0472.35002
[16] Newell, A.C.: Solitons in Mathematics and Physics, CBMS-NSF Regional Conf. Ser. in Appl. Math.48, Philadelphia: SIAM, 1985
[17] Faddeev, L.D., Takhtajan, V.E.: Hamiltonian Methods in the Theory of Solitons. Berlin, Heidelberg, New York: Springer, 1986 · Zbl 0632.58003
[18] Fokas, A.S., Zakharov, V.E.: (eds.), Important Developments in Soliton Theory. Berlin, Heidelberg, New York: Springer, 1993 · Zbl 0801.00009
[19] Lax, P.: Comm. Pure. Appl. Math.21, 467 (1968) · Zbl 0162.41103
[20] Sym, A.: Soliton Surfaces and Their Applications (Soliton Geometry from Spectral Problems). In: Geometrical Aspects of the Einstein Equations and Integrable Systems, Lect. Notes Phys., Vol.239, Berlin, Heidelberg, New York: Springer, 1985, pp. 154–231 · Zbl 0583.53017
[21] Olver, P.J.: Applications of Lie Groups to Differential Equations. Berlin, Heidelberg, New York: Springer-Verlag, 1986 · Zbl 0588.22001
[22] Cartan, E.: La Theorie des Groups Finis et Continus et la Geometrie Differentielle Traitees par la Methode du Repere Mobile. Editions Jaeques Gabay, 1992
[23] Griffiths, P.: On Cartan’s method of Lie groups and moving frames as applied to uniqueness and existence questions in differential geometry. Duke Math. J. (1974) · Zbl 0294.53034
[24] Fokas, A.S., Gel’fand, I.M., Liu, Q.M.: The motion of curves, of surfaces, and their integrability. Preprint, 1995
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.