zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The constrained Newton method on a Lie group and the symmetric eigenvalue problem. (English) Zbl 0864.65032
An important class of subproblems in nonlinear equality constrained optimization problems is where the constraint space is a Lie group. Symmetric eigenvalue problems may also be formulated in this manner. Given a Lie group $G$ and a smooth function $\varphi: G\to\bbfR$, the author gives the Newton method on $G$, defined in terms of an appropriate gradient and Hessian of $\varphi$. Quadratic convergence of the method is proved. The method as described depends on a choice of basis vectors for the local tangent space of $G$; in the next section this method is extended to a coordinate free version. The coordinate free Newton method is then developed for the symmetric eigenvalue problem. Two numerical examples are presented, and the results of the second compared with those from the shifted QR method.

MSC:
65H10Systems of nonlinear equations (numerical methods)
65F15Eigenvalues, eigenvectors (numerical linear algebra)
WorldCat.org
Full Text: DOI
References:
[1] Bayer, D. A.; Lagarias, J. C.: The nonlinear geometry of linear programming I, affine and projective scaling trajectories; II, Legendre transform coordinates and central trajectories. Trans. amer. Math. soc. 314, 499-581 (1989) · Zbl 0671.90046
[2] Brockett, R. W.: Dynamical systems that sort lists, diagonalise matrices and solve linear programming problems. Proceedings IEEE conference on decision and control, 799-803 (1988)
[3] Brockett, R. W.: Dynamical systems that sort lists, diagonalise matrices, and solve linear programming problems. Linear algebra appl. 146, 79-91 (1991) · Zbl 0719.90045
[4] Brockett, R. W.: Differential geometry and the design of gradient algorithms. Proc. sympos. Pure math. 54, 69-92 (1993) · Zbl 1107.37306
[5] Chu, M. T.; Driessel, K. R.: The projected gradient method for least squares matrix approximations with spectral constraints. SIAM J. Numer. anal. 27, No. 4, 1050-1060 (1990) · Zbl 0704.65025
[6] Faybusovich, L. E.: Hamiltonian structure of dynamical systems which solve linear programming problems. Phys. D. (1991) · Zbl 0745.58023
[7] Golub, G. H.; Van Loan, C. F.: Matrix computations. (1989) · Zbl 0733.65016
[8] Halgason, S.: Differential geometry, Lie groups and symmetric spaces. (1978)
[9] Helmke, U.; Moore, J. B.: Singular value decomposition via gradient flows. Systems control lett. 14, 369-377 (1990)
[10] Helmke, U.; Moore, J. B.: Optimization and dynamical systems. (1994) · Zbl 0984.49001
[11] Mahony, R. E.: Optimization algorithms on homogeneous spaces: with applications in linear systems theory. Ph.d. thesis (1994)
[12] Mahony, R. E.; Helmke, U.: System assignment and pole placement for symmetric realisations. J. math. Systems estim. Control (1995) · Zbl 0852.93035
[13] Mahony, R. E.; Helmke, U.; Moore, J. B.: Pole placement algorithms for symmetric realisations. Proceedings of IEEE conference on decision and control (1993)
[14] Minoux, M.: Mathematical programming: theory and algorithms. (1986) · Zbl 0602.90090
[15] Moore, J. B.; Mahony, R. E.; Helmke, U.: Recursive gradient algorithms for eigenvalue and singular value decompositions. Proceedings of the American control conference (1992) · Zbl 0808.65031
[16] Moore, J. B.; Mahony, R. E.; Helmke, U.: Numerical gradient algorithms for eigenvalue and singular value calculations. SIAM J. Matrix anal. 15, No. 3, 881-902 (1994) · Zbl 0808.65031
[17] Nesterov, Y.; Nemirovskii, A.: Interior-point polynomical algorithms in convex programming. (1994) · Zbl 0824.90112
[18] Perkins, J. E.; Helmke, U.; Moore, J. B.: Balanced realizations via gradient flow techniques. Systems control lett. 14, 369-380 (1990) · Zbl 0699.93010
[19] Shub, M.; Smale, S.: Complexity of Bezout’s theorem. I: geometric aspects. J. amer. Math. soc. 6, No. 2, 459-501 (1993) · Zbl 0821.65035
[20] Smith, S. T.: Dynamical systems the perform the singular value decomposition. Systems control lett. 16, No. 5, 319-327 (1991) · Zbl 0728.93051
[21] Smith, S. T.: Geometric optimization methods for adaptive filtering. Ph.d. thesis (1993)
[22] Varadarajan, V. S.: Lie groups, Lie algebras, and their representations. Grad texts in math. 10.2 (1984) · Zbl 0955.22500
[23] Warner, F. W.: Foundations of differentiable manifolds and Lie groups. Grad texts in math. (1983)
[24] Wilkinson, J. H.: Global convergence of the QR algorithm. Linear algebra appl. (1968) · Zbl 0237.65029
[25] Yan, W. -Y.; Moore, J. B.; Helmke, U.: Recursive algorithms for solving a class of nonlinear matrix equations with applications to certain sensitivity optimization problems. SIAM J. Control optim. (1994) · Zbl 0808.93026