zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Continuous meshless approximations for nonconvex bodies by diffraction and transparency. (English) Zbl 0864.73076
Summary: Continuous meshless approximations are developed for domains with non-convex boundaries, with emphasis on cracks. Two techniques are developed in the context of the element-free Galerkin method: a transparency method wherein smooth approximations are generated by making boundaries partially transparent, and a diffraction method, where the domain of influence wraps around a concave boundary. They are compared to the original method based on the visibility criterion in which the approximations are discontinuous in the vicinity of nonconvex boundaries. The performance of the methods is compared using two elastostatic examples: an infinite plate with a hole and a crack problem.

74S30Other numerical methods in solid mechanics
74R99Fracture and damage
Full Text: DOI
[1] Anderson, T. L. 1991: Fracture Mechanics: Fundamental and Applications (First ed.). CRC Press
[2] Atluri, S. N.; Kobayashi, A. S.; Nakagaki, M. 1975: An assumed displacement hybrid finite element model for linear fracture mechanics. International Journal of Fracture 11 (2): 257-271 · Zbl 0312.73114 · doi:10.1007/BF00038893
[3] Babuska, I.; Melenk, J. M. (in preparation). The partition of unity finite element method
[4] Belytschko, T.; Krongauz, Y.; Fleming, M.; Organ, D.; Liu, W. K. (to appear). Smoothing and accelerated computations in the element-free Galerkin method. Journal of Computational and Applied Mathematics · Zbl 0862.73058
[5] Belytschko, T.; Lu, Y. Y.; Gu, L. 1994: Element-free Galerkin methods. International Journal for Numerical Methods in Engineering 37, 229-256 · Zbl 0796.73077 · doi:10.1002/nme.1620370205
[6] Belytschko, T.; Lu, Y. Y.; Gu, L.; Tabbara, M. 1995: Element-free Galerkin methods for static and dynamic fracture. International Journal of Solids and Structures 32 (17), 2547-2570 · Zbl 0918.73268 · doi:10.1016/0020-7683(94)00282-2
[7] Benzley, S. E. 1974: Representation of singularities with isoparametric finite elements. International Journal for Numerical Methods in Engineering 8: 537-545 · Zbl 0282.65087 · doi:10.1002/nme.1620080310
[8] Duarte, C. A.; Oden, J. T. 1995: Hp clouds ? a meshless method to solve boundary-value problems. Technical Report 95-05, Texas Institute for Computational and Applied Mathematics, University of Texas at Austin
[9] Fleming, M.; Chu, Y. A.; Moran, B.; Belytschko, T. (submitted): Enriched element-free Galerkin methods for singular fields. International Journal for Numerical Methods in Engineering
[10] Hegen, D. 1994: Numerical techniques for the simulation of crack growth. Technical report, Eindhoven University of Technology. Final report of the postgraduate programme Mathematics for Industry
[11] Krysl, P.; Belytschko, T. (submitted): Nonconforming element-free Galerkin method. Computer Methods in Applied Mechanics and Engineering · Zbl 0841.73064
[12] Lancaster, P.; Salkauskas, K. 1981: Surfaces generated by moving least squares methods. Mathematics of Computation 37: 141-158 · Zbl 0469.41005 · doi:10.1090/S0025-5718-1981-0616367-1
[13] Liu, W. K.; Jun, S.; Li, S.; Adee, J.; Belytschko, T. 1995: Reproducing kernel particle methods for structural dynamics. International Journal for Numerical Methods in Engineering 38, 1655-1679 · Zbl 0840.73078 · doi:10.1002/nme.1620381005
[14] Liu, W. K.; Li, S.; Belytschko, T. (submitted): Moving least square kernel method, methodology and convergence. Computer Methods in Applied Mechanics and Engineering · Zbl 0883.65088
[15] Moran, B.; Shih, C. F. 1987: Crack tip and associated domain integrals from momentum and energy balance. Engineering Fracture Mechanics 27(6): 615-641 · doi:10.1016/0013-7944(87)90155-X
[16] Nayroles, B.; Touzot, G.; Villon, P. 1992: Generalizing the finite element method: diffuse approximation and diffuse elements. Computational Mechanics 10: 307-318 · Zbl 0764.65068 · doi:10.1007/BF00364252
[17] Nikishkov, G. P.; Atluri, S. N. 1987: An Equivalent Domain Integral Method for Computing Crack-Tip Parameters in Non-elastic Thermo-mechanical Fracture. Engineering Fracture Mechanics, 26: 851-868 · doi:10.1016/0013-7944(87)90034-8
[18] Strang, G.; Fix, G. 1973: An Analysis of the Finite Element Method. Englewood Cliffs, N. J.: Prentice-Hall · Zbl 0356.65096
[19] Terry, T. 1994: Fatigue crack propagation modeling using the element-free Galerkin method. Masters thesis, Northwestern University
[20] Timoshenko, S. P.; Goodier, J. N. 1970: Theory of Elasticity (Third ed.). New York: McGraw Hill · Zbl 0266.73008