×

zbMATH — the first resource for mathematics

On obtaining the time-invariant associated system of a periodic system through system equivalence. (English) Zbl 0864.93033
The following result is presented: the standard Rosenbrock strict system equivalence technique can be used as a way for obtaining the associated system at a given initial time of a linear periodic discrete-time system \(S\), starting from its “stacked form” at the same initial time.
MSC:
93B17 Transformations
93C99 Model systems in control theory
PDF BibTeX XML Cite
Full Text: Link EuDML
References:
[1] M. Araki, K. Yamamoto: Multivariate multirate sampled-data systems: state space description, transfer characteristics, and Nyquist criterion. IEEE Trans. Automat. Control AC-31 (1986), 145-154.
[2] S. Bittanti: Deterministic and stochastic linear periodic systems. Time Series and Linear Systems (S. Bittanti, Springer-Verlag, Berlin 1986, pp. 141-182.
[3] P. Colaneri: Zero-error regulation of discrete-time linear periodic systems. Systems Control Lett. 15 (1990), 2, 161-167. · Zbl 0712.93047 · doi:10.1016/0167-6911(90)90010-R
[4] C. Coll R. Bru E. Sanchez, V. Hernandez: Discrete-time linear periodic realization in the frequency domain. Linear Algebra Appl. 203/204 (1994), 301-326. · Zbl 0802.93041 · doi:10.1016/0024-3795(94)90207-0
[5] G. Conte A. M. Perdon, S. Longhi: Zero structure at infinity of linear periodic systems. Circuits Systems Signal Process. 10 (1991), 1, 91-100. · Zbl 0724.93039 · doi:10.1007/BF01183242
[6] D. S. Flamm: A new shift-invariant representation for periodic linear systems. Systems Control Lett. 17 (1991), 9-14. · Zbl 0729.93034 · doi:10.1016/0167-6911(91)90093-T
[7] O. M. Grasselli: A canonical decomposition of linear periodic discrete-time systems. Internat. J. Control 40 (1984), 1, 201-214. · Zbl 0546.93010 · doi:10.1080/00207178408933268
[8] O. M. Grasselli, F. Lampariello: Dead-beat control of linear periodic discrete-time systems. Internat. J. Control 33 (1981), 1091-1106. · Zbl 0464.93056 · doi:10.1080/00207178108922978
[9] O. M. Grasselli, S. Longhi: Disturbance localization by measurement feedback for linear periodic discrete-time systems. Automatica 24 (1988), 3, 375-385. · Zbl 0653.93033 · doi:10.1016/0005-1098(88)90078-7
[10] O. M. Grasselli, S. Longhi: Zeros and poles of linear periodic multivariable discrete-time systems. Circuits Systems Signal Process. 7 (1988), 3, 361-380. · Zbl 0662.93015 · doi:10.1007/BF01599976
[11] O. M. Grasselli, S. Longhi: Pole placement for non-reachable periodic discrete-time systems. Mathematics Control Signals Systems 4 (1991); 439-455. · Zbl 0739.93034
[12] O. M. Grasselli, S. Longhi: Finite zero structure of linear periodic discrete-time systems. Internat. J. Systems Sci. 22 (1991), 10, 1785-1806. · Zbl 0743.93047 · doi:10.1080/00207729108910751
[13] O. M. Grasselli, S. Longhi: Robust tracking and regulation of linear periodic discrete-time systems. Internat. J. Control 54 (1991), 3, 613-633. · Zbl 0728.93065 · doi:10.1080/00207179108934179
[14] O. M. Grasselli, S. Longhi: Block decoupling with stability of linear periodic systems. J. Math. Systems Estimation Control 3 (1993), 4, 427-458. · Zbl 0785.93062
[15] O. M. Grasselli S. Longhi, A. Tornambe: Large system equivalence for periodic models. 2nd IEEE Mediterranean Symp. on New Directions in Control and Automation, Chania, Greece, 1993, pp. 261-268.
[16] O. M. Grasselli S. Longhi, A. Tornambe: System equivalence for periodic models and systems. SIAM J. Control Optim. 33 (1995), 2, 455-468. · Zbl 0838.93042 · doi:10.1137/S0363012992234578
[17] J. J. Hench, A. J. Laub: Numerical solution of the discrete-time periodic Riccati equation. IEEE Trans. Automat. Control 39 (1994), 1997-1210. · Zbl 0805.65063
[18] M. Kono: Eigenvalue assignment in linear periodic discrete-time systems. Internat. J. Control 32 (1980), 149-158. · Zbl 0443.93044 · doi:10.1080/00207178008922850
[19] R. A. Meyer, C. S. Burrus: A unified analysis of multirate and periodically time-varying digital filters. IEEE Trans. Circuits and Systems 22 (1975), 162-168.
[20] B. Park, E. I. Verriest: Canonical forms on discrete linear periodically time-varying systems and a control application. Proc. of the 28th IEEE CDC, Tampa, Florida 1989, pp. 1220-1225.
[21] L. A. Pernebo: Notes on strict system equivalence. Internat. J. Control 25 (1977), 21-38. · Zbl 0357.93011
[22] H. H. Rosenbrock: State-Space and Multivariable Theory. Nelson, London 1970. · Zbl 0246.93010
[23] P. Van Dooren, J. Sreedhar: When is a periodic discrete-time system equivalent to a time invariant one. Linear Algebra Appl. 212/213 (1994), 131-152. · Zbl 1035.93505 · doi:10.1016/0024-3795(94)90400-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.