zbMATH — the first resource for mathematics

On the Manin conjecture for modular elliptic curves. (A propos de la conjecture de Manin pour les courbes elliptiques modulaires.) (French) Zbl 0865.11049
Let \(E\) be a strong Weil curve over \(\mathbb{Q}\) with modular parametrization \(\varphi: X_0(N) \to E\). Let \(\alpha_E\) be a Néron differential on \(E\). Then its pull-back satisfies \(\varphi^* (\alpha_E) =c_Ef_E dq/q\), where \(f_E\) is a normalized newform of weight 2 for \(\Gamma_0(N)\) and \(c_E\), the so-called Manin constant is a rational number, which can assumed to be positive by suitably choosing the sign of \(\alpha_E\). Manin conjectures that \(c_E=1\).
Let \(m\) be the largest number such that \(m^2\) divides \(N\). It is known that \(c_E\) is an integer [B. Edixhoven in: Arithmetic algebraic geometry, Prog. Math. 89, 25-39 (1991; Zbl 0749.14025)] and that all prime divisors of \(c_E\) divide \(2m\) [B. Mazur, Invent. Math. 44, 129-162 (1978; Zbl 0386.14009)]. The paper contains a hitherto unpublished result by M. Raynaud saying that if \(m\) is odd, then \(c_E\) is not divisible by 4. This is based on a study of the failure of the Néron model functor to be exact when the ramification index \(e\) equals \(p-1\). The relevant results are given in an appendix.
On the other hand, the authors prove that all prime divisors of \(c_E\) must divide \(N\), which provides new information when \(N\) is odd. As a corollary, they obtain Manin’s conjecture for semi-stable elliptic curves with good reduction at 2. They further remark that specific results of Raynaud’s imply the truth of the Manin conjecture for all other semi-stable strong Weil curves \(E\), except when \(E\) has multiplicative reduction at 2 and the minimal discriminant of \(E\) has even 2-adic valuation.

11G05 Elliptic curves over global fields
14H52 Elliptic curves
14G35 Modular and Shimura varieties
Full Text: Numdam EuDML
[1] Atkin, A.O.L. and Lehner, J. : Hecke operators on \Gamma 0(m) , Math. Ann. 185 (1970), 134-160. · Zbl 0177.34901 · doi:10.1007/BF01359701 · eudml:161948
[2] Bosch, S. , Lütkebohmert, W. , and Raynaud, M. : Néron Models , Springer-Verlag, New York, 1990. · Zbl 0705.14001
[3] Carayol, H. : Sur les représentations l-adiques associées aux formes modulaires de Hilbert , Ann. Sc. Ens 19 (1986), 409-468. · Zbl 0616.10025 · doi:10.24033/asens.1512 · numdam:ASENS_1986_4_19_3_409_0 · eudml:82181
[4] Deligne, P. , and Rapoport, M. : Schémas de modules des courbes elliptiques, dans Modular functions of one variable II , Lectures Notes in Mathematics 349, Springer-Verlag, New York, 1973. · Zbl 0281.14010
[5] Edixhoven, B. : On the Manin constants of modular elliptic curves , in: Arithmetic algebraic geometry , Progress in Math. 89, pp. 25-39, Birkhäuser, 1989. · Zbl 0749.14025
[6] Mazur, B. : Modular curves and the Eisenstein ideal , Pub. Math. IHES 47 (1977), 33-186. · Zbl 0394.14008 · doi:10.1007/BF02684339 · numdam:PMIHES_1977__47__33_0 · eudml:103950
[7] Mazur, B. : Courbes Elliptiques et Symboles Modulaires , Séminaire Bourbaki, exposé 414, Juin 1972. · Zbl 0276.14012 · www.numdam.org
[8] Mazur, B. : Rational isogenies of prime degree , Invent. Math. 44 (1978), 129-162. · Zbl 0386.14009 · doi:10.1007/BF01390348 · eudml:142524
[9] Raynaud, M. : Schémas en groupes de type (p, ... , p) , Bul. S.M. F. t. 102 (1974), 241-280. · Zbl 0325.14020 · doi:10.24033/bsmf.1779 · numdam:BSMF_1974__102__241_0 · eudml:87227
[10] Ribet, K. : Endomorphisms of semi-stable abelian varieties over number fields , Ann. of Math. 101 (1975), 555-562. · Zbl 0305.14016 · doi:10.2307/1970941
[11] Shimura, G. : Introduction to the Arithmetic Theory of Automorphic Functions, Iwanami Shoten , Publishers and Princeton University Press, 1971. · Zbl 0221.10029
[12] Tate, J. : p-Divisible groups, Proceedings of a conference on local fields, Nuffic summer school Driebergen, 1966, pp. 158-183. · Zbl 0157.27601
[13] Zagier, D. : Modular parametrizations of elliptic curves , Canad. Math. Bull. 28 (3) (1985), 372-384. · Zbl 0579.14027 · doi:10.4153/CMB-1985-044-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.