# zbMATH — the first resource for mathematics

Zero-cycles on quadric fibrations: Finiteness theorems and the cycle map. (English) Zbl 0865.14002
Invent. Math. 122, No. 1, 83-117 (1995); erratum 123, No. 3, 611 (1996).
From the very nice introduction: “Let $$C$$ be a smooth projective integral curve over a field $$k$$ of characteristic not 2, let $$\pi:X\to C$$ be a quadric fibration of relative dimension $$d\geq 1$$. $$\pi$$ is called admissible if for every closed point $$P\in C$$ the scheme $$X\times_C\text{Spec} {\mathcal O}_{C,P}$$ is $${\mathcal O}_{C,P}$$-isomorphic to the scheme of zeros of a diagonal form $$\langle a_1, \dots, a_n \rangle$$ with $$0\leq v_P(a_i)\leq 1$$ and $$v_P(a_i)=0$$ for $$1\leq i\leq {n+1 \over 2}$$ $$(v_P$$ is the valuation at $$P)$$. (For any quadric fibration $$\pi:X \to C$$ there exists an admissible quadric fibration with isomorphic generic fiber.) Throughout $$\pi:X\to C$$ is assumed to be a quadric fibration of relative dimension $$d$$ and $$q$$ is the quadratic space defining its generic fiber, $$d(q)$$ is the discriminant of $$q$$. If $$d\leq 2$$ and $$k$$ is a number field (except if $$d=2$$ and $$d(q)$$ is not a square in $$k(C)$$ but $$d(q)$$ is a square in $$\overline k(C))$$ or $$k$$ is a local field, J.-L. Colliot-Thélène and A. N. Skorobogatov proved [$$K$$-Theory 7, No. 5, 477-500 (1993; Zbl 0837.14002)] that the relative Chow group $$\text{CH}_0(X/C)$$ is finite and that $$\text{CH}_0 (X/C)=0$$ if $$k$$ is of cohomological dimension 1. The paper of Colliot-Thélène and Skorobogatov is the starting point of the paper discussed here. Colliot-Thélène and Skorobogatov raised the following questions:
(i) If $$k$$ is a finitely generated field over $$\mathbb{Q}$$ is $$\text{CH}_0 (X/C)$$ finite?
(ii) If $$d\geq 3$$ and $$k$$ a field of cohomological dimension less than or equal to 2, is the group $$\text{CH}_0 (X/C)$$ zero or is it at least finite?
(iii) If $$\pi:X\to C$$ is a smooth conic fibration over a $$p$$-adic field is $$\text{CH}_0 (X/C)= 0$$?
(iv) If $$d=2$$, and $$k$$ is a $$p$$-adic field and the fibers of $$\pi$$ are all geometrically integral, is the group $$\text{CH}_0 (X/X)=0$$? (Is it true at least if $$C=\mathbb{P}^1?)$$
In the paper answers to these questions (under some constraints on $$k$$ and on the generic fiber) are given. A survey of the main results:
If $$C$$ is a smooth projective conic over $$k$$ and if the generic fiber is defined by a Pfister neighbor then the group $$A_0(X)=0$$ $$(A_0(X)$$ is the group of zero-cycles of degree zero modulo rational equivalence.) If $$C=\mathbb{P}^1$$ then the condition on the generic fiber can be dropped. – An example (3.6) with $$k=\mathbb{Q}(t)$$ or $$\mathbb{Q}_5 (t)$$ and $$X=Q\times C$$, $$Q$$ a quadric of dimension 2 over $$k$$ such that $$A_0(Q\times C) \neq 0$$ is given.
For $$k$$ a number field or a field of 2-cohomological dimension $$\leq 2$$, it is shown that $$A_0(X)=0$$ for any smooth quadric fibration over a conic (3.5).
Counterexamples to questions (iii) and (iv) are given (6.1 and 6.2). In case $$k$$ is a local field and $$\pi:X\to C$$ is an admissible quadric fibration of relative dimension $$\geq 1$$ over a smooth projective curve $$C$$ over $$k$$ it is shown that $$\text{CH}_0 (X/C)$$ is finite (4.8). This leads to finiteness of the torsion of $$\text{CH}_0 (X)$$ for such fibration (4.9). It also leads to finiteness of $$A_0(X)$$ for varieties $$X$$ that are smooth complete intersections of two quadrics in $$\mathbb{P}^1$$ and such that $$X(k)\neq \emptyset$$ (4.10).
The results of Colliot-Thélène and Skorobogatov mentioned above, are completed. It is proven that they also hold if $$d(q)$$ is not a square in $$k(C)$$ but is a square in $$\overline k(C)$$ (5.1 and 5.2). In (5.3) it is proven that for an admissible fibration over any smooth projective conic over a number field $$k$$, $$\text{CH}_0 (X_{k_v}/C_{k_v})=0$$ for all but finitely many places $$v$$ of $$k$$. The (counter)examples in section 6 (mentioned before) also lead to negative answers to other open questions. In (7.6) a smooth conic fibration $$\pi:X\to C$$ over a smooth hyperelliptic curve $$C$$ defined over $$\mathbb{Q}_3$$ is constructed such that $$X (\mathbb{Q}_3) \neq\emptyset$$ but for which the map $$\kappa_X$$ induced by the Brauer pairing is not injective. In (8.5) an example of a smooth projective surface with rational points over $$p$$-adic fields for which the cycle map $$\text{CH}^2 (X)/2\to H^4_{\text{et}} (X,\mathbb{Z}/2)$$ is not injective is given.”
The erratum that appeared in Invent. Math. 123, No. 3, 611 (1996), mentions that at several pages the sign $$\leq$$ was changed into the number 5. Although this is an unfortunate mistake, it is not hard for the reader the correct it.

##### MSC:
 14C05 Parametrization (Chow and Hilbert schemes) 14C25 Algebraic cycles 11G35 Varieties over global fields 14C35 Applications of methods of algebraic $$K$$-theory in algebraic geometry
##### Keywords:
relative Chow group; zero-cycles
Full Text:
##### References:
  [A] Arason, J.Kr.: A proof of Merkurjev’s theorem. In: Quadratic and hermitian forms, CMS Conf. Proc. Vol.4, Providence, 121-130 (1984) · Zbl 0556.10009  [AEJ] Arason, J.Kr., Elman, R., Jacob, B.: Fields of cohomological 2-dimension three. Math. Ann.274, 649-657 (1986) · Zbl 0576.12025  [AP] Arason, J.Kr., Pfister, A.: Beweis des Krullschen Durchschnittsatzes für den Wittring. Invent. Math.12, 173-176 (1971) · Zbl 0212.37302  [BO] Bloch, S., Ogus, A.: Gersten’s conjecture and the homology of schemes. Ann. Scient. Ec. Norm. Sup. 4 Série7, 181-202 (1974) · Zbl 0307.14008  [CT1] Colliot-Thélène, J.-L.: Formes quadratiques multiplicatives et variété algébriques. Bull. Soc. Math. France,106, 113-151 (1978) · Zbl 0386.14012  [CT2] Colliot-Thélène, J.-L.: Cycles algébriques de torsion et K-théorie algébrique. In: Arithmetic algebraic geometry. Trento, SLN 1553, 1991  [CTP] Colliot-Thélène, J.-L., Parimala, R.: Real components of algebraic varieties and étale cohomology. Invent. Math.101, 81-92 (1990) · Zbl 0726.14013  [CTSS] Colliot-Théléne, J.-L., Sansuc, J.-J., Swinnerton-Dyer, P.: Intersections of two quadrics and Châtelet surfaces, I.J. reine Angew. Math.373, 37-107 (1987) · Zbl 0622.14029  [CTS] Colliot-Thélène, J.-L., Skorobogatov, A.N.: Groupe de Chow des zérocycles sur les fibrés en quadriques. K-Theory7, 477-500 (1993) · Zbl 0837.14002  [CTSu] Colliot-Théléne, J.-L., Sujatha, R.: Unramified Witt groups of real anisotropic quadrics. Proc. Symp. Pure Math. Vol. 88, Part 2, p 127-147 · Zbl 0827.11022  [G] Gros, M.: O-cycles de degré zéro sur les surface fibrées en coniques. J. reine Angew. Math.373, 166-184 (1987) · Zbl 0593.14005  [Grl] Grothendieck, A.: Le groupe de Brauer II, Dix exposés sur la cohomologie des schémas, pp. 67-87. Amsterdam: North-Holland 1968  [Gr2] Grothendieck, A.: Le groupe de Brauer III, Dix exposés sur la cohomologie des schémas, pp. 88-188. Amsterdam: North-Holland 1968  [K] Kato K.: A Hasse principle for two-dimensional global fields. J. reine Angew. Math.366, 142-181 (1986) · Zbl 0576.12012  [Knl] Knebusch, M.: On algebraic curves over real closed fields; II. Math. Z.151, 189-205 (1976) · Zbl 0328.14012  [Kn2] Knebusch, M.: Symmetric bilinear forms over algebraic varieties, Conf. on quadratic forms. Vol. 46, pp. 103-283. Kingston, Queen’s papers in pure and applied math. 1977  [Kn3] Knebusch, M.: Generic splitting of quadratic forms, I. Proc. London Math. Soc.33, 65-93 (1976) · Zbl 0351.15016  [L] Lam, T.Y.: The algebraic theory of quadratic forms. New York: Benjamin 1973 · Zbl 0259.10019  [Le] Levine, M.: Zero cycles and K-theory on singular varieties, Algebraic Geometry 1985. Bowdoin, Proc. Symp. Pure Math.46 (part 2), 451-462 (1987)  [Li] Lichtenbaum, S.: Duality theorems for curves over p-adic fields. Invent. Math.7, 120-136 (1969) · Zbl 0186.26402  [M] Mattuck, A.: Abelian varieties over p-adic ground fields, Ann. Math.62, 92-119 (1955) · Zbl 0066.02802  [Mi] Milne, J.S.: Etale Cohomology. Princeton: Princeton University Press 1980  [P] Parimala, R.: Witt groups of curves over local fields. Comm. Algebra,17, 2857-2862 (1989) · Zbl 0739.11017  [Q] Quillen, D.: Higher algebraic K-theory: I. In: Algebraic K-theory I. LNM, Vol. 341, pp. 85-148 Berlin: Springer 1973 · Zbl 0292.18004  [R] Reiner, I.: Maximal orders. London, New York, San Francisco: Academic press 1975 · Zbl 0305.16001  [S1] Saito, S.: A conjecture of Bloch and Brauer groups of surfaces overp-adic fields. Preprint 1990  [S2] Saito, S.: Cycle map on torsion algebraic cycles of codimension two. Invent. Math.106, 443-460 (1991) · Zbl 0764.14004  [Sc] Scharlau, W.: Quadratic and Hermitian forms Grundlehren der Math. Wiss., Vol. 270, Berlin, Heidelberg, New York: Springer 1985  [Se] Serre, J.-P.: Cohomologie Galoisienne (SLN Vol. 5) Berlin, Heidelberg, New York: Springer 1963  [Sh] Shatz, S.S.: Prifinite groups, arithmetic and geometry. Annals of Mathematics Studies, Vol. 67 Princeton: Princeton University Press 1972  [Sk] Skorobogatov, A.N.: Arithmetic on certain quadric bundles of relative dimension two. I. J. reine Angew. Math.407, 57-74 (1990) · Zbl 0692.14001  [Su] Suslin, A.A.: Algebraic K-theory and the norm-residue homomorphism. J. Soviet Math.30, 2556-2611 (1985) · Zbl 0566.12016  [Sw] Swan, R.: K-theory of quadric hypersurfaces. Ann. Math.122, 113-153 (1985) · Zbl 0601.14009  [V] Van Geel, J.: Applications of the Riemann-Roch theorem for curves to quadratic forms and division algebras. Recherches de Mathématique 7, Institut de Mathématique pure et appliquée, Université Catholique de Louvain, 1991
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.