Lindblad, Hans; Sogge, Christopher D. Restriction theorems and semilinear Klein-Gordon equations in \((1+3)\)-dimensions. (English) Zbl 0865.35077 Duke Math. J. 85, No. 1, 227-252 (1996). The authors consider the semilinear Klein-Gordon equation with right-hand side \(F_p(u)\), \[ |\partial^jF_p(u)|\leq C|u|^{p-j},\quad 0\leq j\leq [p], \qquad |F_p'(u)-F_p'(v)|\leq C|u-v|^{p-j}, \] if \(1<p<2\), and prove global and semiglobal existece results for the Cauchy problem. More precisely, in the case \(1\leq n\leq 3\), \(p>1+{2\over n}\) it is shown that for each compactly supported Cauchy data \((f,g)\in C^{1+[n/2]}\times C^{[n/2]}\cap H^{(n+2)/2}\times H^{n/2}\) one can find a global \(C^1\) solution if \(|f|_{H^{(n+2)/2}}+|g|_{H^{n/2}}\) is sufficiently small. A semiglobal existence result, i.e. \(u\in C^1([0,T_\varepsilon]\times\mathbb{R}^n)\), \(T_\varepsilon=\exp(c/\varepsilon^{p-1})\), \(c=\text{const}>0\), \(\varepsilon>0\) sufficiently small, is proved under the weaker condition \(p=1+{2/n}\). Reviewer: P.Popivanov (Sofia) Cited in 1 ReviewCited in 6 Documents MSC: 35L15 Initial value problems for second-order hyperbolic equations 35L70 Second-order nonlinear hyperbolic equations Keywords:semiglobal existence result PDF BibTeX XML Cite \textit{H. Lindblad} and \textit{C. D. Sogge}, Duke Math. J. 85, No. 1, 227--252 (1996; Zbl 0865.35077) Full Text: DOI OpenURL References: [1] C. Fefferman, Inequalities for strongly singular convolution operators , Acta Math. 124 (1970), 9-36. · Zbl 0188.42601 [2] G. Georgiev and P. Popivanov, Global solution to the two-dimensional Klein-Gordon equation , Comm. Partial Differential Equations 16 (1991), no. 6-7, 941-995. · Zbl 0741.35039 [3] L. Hörmander, The lifespan of classical solutions of nonlinear hyperbolic equations , Pseudodifferential operators (Oberwolfach, 1986), Lecture Notes in Math., vol. 1256, Springer, Berlin, 1987, pp. 214-280. · Zbl 0632.35045 [4] L. Hörmander, Nonlinear hyperbolic differential equations , Lund Univ. Lecture Notes, unpublished, 1988. [5] L. Hörmander, On Sobolev spaces associated with some Lie algebras , Current topics in partial differential equations, Kinokuniya, Tokyo, 1986, pp. 261-287. · Zbl 0658.46023 [6] F. John, Blow-up of solutions of nonlinear wave equations in three space dimensions , Manuscripta Math. 28 (1979), no. 1-3, 235-268. · Zbl 0406.35042 [7] S. Klainerman, Global existence of small amplitude solutions to nonlinear Klein-Gordon equations in four space-time dimensions , Comm. Pure Appl. Math. 38 (1985), no. 5, 631-641. · Zbl 0597.35100 [8] S. Klainerman, Remark on the asymptotic behavior of the Klein-Gordon equation in \(\mathbf R^ n+1\) , Comm. Pure Appl. Math. 46 (1993), no. 2, 137-144. · Zbl 0805.35104 [9] R. Kosecki, The unit condition and global existence for a class of nonlinear Klein-Gordon equations , J. Differential Equations 100 (1992), no. 2, 257-268. · Zbl 0781.35062 [10] H. Lindblad, Blow-up for solutions of \(\square u=| u| ^ p\) with small initial data , Comm. Partial Differential Equations 15 (1990), no. 6, 757-821. · Zbl 0712.35018 [11] H. Lindblad and C. D. Sogge, Long-time existence for small amplitude semilinear wave equations , to appear in Amer. J. Math. · Zbl 0869.35064 [12] J. L. Rubio de Francia, Transference principles for radial multipliers , Duke Math. J. 58 (1989), no. 1, 1-19. · Zbl 0676.42009 [13] I. Segal, Space-time decay for solutions of wave equations , Advances in Math. 22 (1976), no. 3, 305-311. · Zbl 0344.35058 [14] J. Shatah, Normal forms and quadratic nonlinear Klein-Gordon equations , Comm. Pure Appl. Math. 38 (1985), no. 5, 685-696. · Zbl 0597.35101 [15] C. D. Sogge, Fourier integrals in classical analysis , Cambridge Tracts in Mathematics, vol. 105, Cambridge University Press, Cambridge, 1993. · Zbl 0783.35001 [16] C. D. Sogge, Lectures on nonlinear wave equations , Monographs in Analysis, II, International Press, Boston, MA, 1995. · Zbl 1089.35500 [17] E. M. Stein, Singular integrals and differentiability properties of functions , Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. · Zbl 0207.13501 [18] R. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations , Duke Math. J. 44 (1977), no. 3, 705-714. · Zbl 0372.35001 [19] P. Tomas, A restriction theorem for the Fourier transform , Bull. Amer. Math. Soc. 81 (1975), 477-478. · Zbl 0298.42011 [20] L. Vega, Restriction theorems and the Schrödinger multiplier on the torus , Partial differential equations with minimal smoothness and applications (Chicago, IL, 1990), IMA Vol. Math. Appl., vol. 42, Springer, New York, 1992, pp. 199-211. · Zbl 0791.42011 [21] N. J. Vilenkin, Special functions and the theory of group representations , Translated from the Russian by V. N. Singh. Translations of Mathematical Monographs, Vol. 22, American Mathematical Society, Providence, R. I., 1968. · Zbl 0172.18404 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.