Yurkin, M. Yu. Geometric minimality conditions for systems of exponentials in \(L_ p[-\pi,\pi]\). (English. Russian original) Zbl 0865.42006 Math. Notes 58, No. 5, 1223-1226 (1995); translation from Mat. Zametki 58, No. 5, 773-777 (1995). Among others, the following minimality condition is proved for the system \(e(\Lambda)=\{e^{i\lambda_kx}\}\) of exponentials, where \(\Lambda=\{\lambda_k\in\mathbb{C}:k\in\mathbb{Z}\}\) and \(\lambda_k\neq\lambda_\ell\) whenever \(k\neq\ell\): Suppose that \(1\leq p\leq 2\), \(\varepsilon>-1/2q\), where \(1/p+1/q=1\), and \(0\leq C<1+2\varepsilon\). If \(\lambda_k\in[k+\varepsilon, k+\varepsilon+C]\) for \(k>0\), \(\lambda_k\in[k-\varepsilon-C, k-\varepsilon]\) for \(k<0\), while \(\lambda_0\) is arbitrary, then the system \(e(\Lambda)\) is minimal in the space \(L_p[-\pi,\pi]\). Reviewer: F.Móricz (Szeged) MSC: 42A99 Harmonic analysis in one variable Keywords:minimality conditions; systems of exponentials × Cite Format Result Cite Review PDF Full Text: DOI References: [1] M. Levinson,Gap and Density Theorems, Amer. Math. Soc., Providence, R. I. (1940). · JFM 66.0332.01 [2] M. I. Kadets, ”Exact value of the Paley-Wiener constant,”Dokl. Akad. Nauk SSSR [Soviet Math. Dokl.],155, 1253–1254 (1964). · Zbl 0196.42602 [3] A. M. Sedletskii, ”Completeness and nonminimality of systems of exponentials inL p [, {\(\pi\)}],”Sibirsk. Mat. Zh. [Siberian Math. J.],129, No. 1, 159–170 (1988). [4] S. A. Avdonin, ”Riesz bases of exponentials,”Vestnik Leningrad. Univ., Ser. Mat.-Mekh.-Astronom. [Vestnik Leningrad Univ. Math.], No. 13, 5–12 (1974). · Zbl 0296.46033 [5] S. A. Avdonin and I. Joó, ”Riesz bases of exponentials and sine-type functions,”Acta Math. Hung.,51, No. 1–2, 3–14 (1988). · Zbl 0645.42027 · doi:10.1007/BF01903611 [6] R. P. Boas, Jr.,Entire Functions, Academic Press, New York (1954). · Zbl 0058.30201 [7] A. M. Sedletskii, ”Biorthogonal expansions of functions in series of exponentials on intervals of the real axis,”Uspekhi Mat. Nauk [Russian Math. Surveys],37, No. 5, 51–95 (1982). This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.