Demiclosedness principle and asymptotic behavior for asymptotically nonexpansive mappings. (English) Zbl 0865.47040

The demiclosedness principle of F. E. Browder [Bull. Am. Math. Soc. 74, 660-665 (1968; Zbl 0164.44801)] states that if \(X\) is a uniformly convex Banach space, if \(C\) is a nonempty closed convex subset of \(X\), and if \(T:C\to X\) is a nonexpansive map, then \(I-T\) is demiclosed at each \(y\) in \(X\). In this paper, authors prove this principle at zero for asymptotically nonexpansive maps either in a Banach space with the locally uniform Opial condition or in a nearly uniformly convex Banach space with Opial’s condition. They also study the asymptotic behavior of the iterates for an asymptotically nonexpansive map. Finally, they prove that the uniform Opial condition in a Banach space \(Y\) implies the fixed point property for asymptotically nonexpansive maps defined on weakly compact convex subsets of \(Y\).


47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.
46B20 Geometry and structure of normed linear spaces
47H10 Fixed-point theorems


Zbl 0164.44801
Full Text: DOI


[1] Browder, F. E., Semicontractive and semiaccretive nonlinear mappings in Banach spaces, Bull. Am. math. Soc., 74, 660-665 (1968) · Zbl 0164.44801
[2] Reich, S., Weak convergence theorems for nonexpansive mappings in Banach spaces, J. math. Analysis Applic., 67, 274-276 (1979) · Zbl 0423.47026
[3] Bruck, R. E., A simple proof of the mean ergodic theorem for nonlinear contractions in Banach spaces, Israel J. Math., 32, 107-116 (1979) · Zbl 0423.47024
[4] Hirano, N., A proof of the mean ergodic theorem for nonexpansive mappings in Banach spaces, (Proc. Am. math. Soc., 78 (1980)), 361-365 · Zbl 0452.47064
[5] Hirand, N., Nonlinear ergodic theorems and weak convergence theorems, J. math. Soc. Japan, 34, 35-46 (1982)
[6] Tan, K. K.; Xu, H. K., Nonlinear ergodic theorem for asymptotically nonexpansive mappings, Bull. Austr. math. Soc., 45, 25-36 (1992) · Zbl 0752.47024
[7] Xu, H. K., Existence and convergence for fixed points of mappings of asymptotically nonexpansive type, Nonlinear Analysis, 16, 1139-1146 (1991) · Zbl 0747.47041
[8] Goebel, K.; Kirk, W. A., A fixed point theorem for asymptotically nonexpansive mappings, (Proc. Am. math. Soc., 35 (1972)), 171-174 · Zbl 0256.47045
[9] Opial, Z., Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Am. math. Soc., 73, 591-597 (1967) · Zbl 0179.19902
[10] Gossez, J. P.; Lami Dozo, E., Some geometric properties related to the fixed point theory for nonexpansive mappings, Pacific J. Math., 40, 565-573 (1972) · Zbl 0223.47025
[11] Browder, F. E., Nonlinear operators and nonlinear equations of evolution in Banach spaces, (Proc. Symp. Pure Math., Vol. 18 (1976), Amer. Math. Soc: Amer. Math. Soc Providence, R.I), Part 2 · Zbl 0176.45301
[12] Prus, S., Banach spaces with the uniform Opial property, Nonlinear Analysis, 18, 697-704 (1992) · Zbl 0786.46023
[13] Sullivan, F., A generalization of uniformly rotund Banach spaces, Can. J. Math., 31, 628-636 (1979) · Zbl 0422.46011
[14] Huff, R., Banach spaces which are nearly uniformly convex, Rocky Mount. J. Math., 10, 734-749 (1980) · Zbl 0505.46011
[15] Yu, X. T., \(k\)-UR implies NUC, Kexue Tongbao, 28, 1473-1475 (1983), (in Chinese)
[16] Kirk, W. A., The modulus of \(k\)-rotundity, Boll. Un. mat. Ital., 2-A, 195-201 (1988) · Zbl 0649.46012
[17] Bynum, W. L., Normal structure coefficients for Banach spaces, Pacific J. Math., 86, 427-436 (1980) · Zbl 0442.46018
[18] Dominguez Benavides, T.; Lopez Acedo, G., Lower bounds for normal structure coefficients, (Proc. R. Soc. Edinburgh, 121A (1992)), 245-252 · Zbl 0787.46010
[19] Lim, T. C., Asymptotic centers and nonexpansive mappings in conjugate Banach spaces, Pacific J. Math., 90, 135-143 (1980) · Zbl 0454.47046
[21] Kirk, W. A., Nonexpansive mappings in product spaces, set-valued mapping and \(k\)-uniform rotundity, (Proc. Symposia Pure Math., Vol. 45 (1986)) · Zbl 0594.47048
[22] Lin, P. K., The Browder-Göhde property in product spaces, Houston J. Math, 13, 235-240 (1987) · Zbl 0641.47058
[23] Schu, J., Iterative construction of fixed points of asymptotically nonexpansive mappings, J. math. Analysis. Applic., 158, 407-412 (1991) · Zbl 0734.47036
[24] Schu, J., Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, Bull. Aust. math. Soc., 43, 153-159 (1991) · Zbl 0709.47051
[25] Schu, J., Approximations of fixed points of asymptotically nonexpansive mappings, (Proc. Am. math. Soc., 112 (1991)), 143-151 · Zbl 0734.47037
[26] Bose, S. C., Weak convergence to the fixed point of an asymptotically nonexpansive map, (Proc. Am. math. Soc., 68 (1978)), 305-308 · Zbl 0377.47037
[27] Passty, G. B., Construction of fixed points for asymptotically nonexpansive mappings, (Proc. Am. Math. Soc., 84 (1982)), 213-216 · Zbl 0489.47035
[28] Tan, K. K.; Xu, H. K., Fixed point interation processes for asymptotically nonexpansive mappings, (Proc. Am. math. Soc., 122 (1994)), 733-739 · Zbl 0820.47071
[30] Lim, T. C.; Xu, H. K., Fixed point theorems for asymptotically nonexpansive mappings, Nonlinear Analysis, 22, 1345-1355 (1994) · Zbl 0812.47058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.