×

Hyperbolic volumes of Fibonacci manifolds. (English. Russian original) Zbl 0865.57012

Sib. Math. J. 36, No. 2, 235-245 (1995); translation from Sib. Mat. Zh. 36, No. 2, 266-277 (1995).
The authors study algebra, topology and arithmetics of the Fibonacci manifolds, that is closed hyperbolic 3-manifolds whose fundamental groups are the Fibonacci groups \[ F(2,m)=\langle x_1,\dots ,x_m ; x_ix_{i+1}=x_{i+2} , i\text{ mod }m\rangle. \] In fact, due to celebrated results by H. Helling, A. C. Kim and J. Mennicke (preprint 343, Univ. of Bielefeld) and by H. M. Hilden, M. T. Lozano and J. M. Montesinos-Amilibia [Topology ’90, Contrib. Res. Semester Low Dimensional Topol., Columbus/OH (USA) 1990, Ohio State Univ. Math. Res. Inst. Publ. 1, 169-183 (1992; Zbl 0767.57004)], such hyperbolic 3-manifolds correspond to the Fibonacci groups \(F(2,2n)\) with \(n\geq 4\) and are \(n\)-fold cyclic coverings of the 3-sphere branched over the figure-eight knot. In particular, the authors show that the hyperbolic volumes of the (closed hyperbolic) Fibonacci manifolds coincide with volumes of non-compact hyperbolic 3-manifolds (some known knot and link complements). As a corollary of this fact, the authors present arithmetic and non-arithmetic hyperbolic 3-manifolds with the same volume.

MSC:

57N10 Topology of general \(3\)-manifolds (MSC2010)
57M05 Fundamental group, presentations, free differential calculus
20F05 Generators, relations, and presentations of groups

Citations:

Zbl 0767.57004
Full Text: DOI

References:

[1] J. Conway, ”Advanced problem 5327,” Amer. Math. Monthly,72, 915 (1965). · doi:10.2307/2315059
[2] J. Conway, ”Solution to Advanced problem 5327,” Amer. Math. Monthly,74, 91–93 (1967). · doi:10.2307/2314083
[3] G. Havas, ”Computer aided determination of a Fibonacci group,” Bull. Austral. Math. Soc.,15, 297–305 (1976). · Zbl 0332.20012 · doi:10.1017/S0004972700022668
[4] M. F. Newman, ”Proving a group infinite,” Arch. Math.,54, No. 3, 209–211 (1990). · Zbl 0662.20023 · doi:10.1007/BF01188513
[5] H. Helling, A. C. Kim, and J. Mennicke, A Geometric Study of Fibonacci Groups [Preprint/SFB-343, Diskrete Strukturen in der Mathematik], Bielefeld (1990). · Zbl 0896.20026
[6] R. M. Thomas, ”The Fibonacci groupsF(2,2m),” Bull. London Math. Soc.,21, No. 5, 463–465 (1989). · Zbl 0647.20027 · doi:10.1112/blms/21.5.463
[7] D. L. Johnson, J. W. Wamsley, and D. Wright, ”The Fibonacci groups,” Proc. London Math. Soc.,29, 577–592 (1974). · Zbl 0327.20014 · doi:10.1112/plms/s3-29.4.577
[8] H. M. Hilden, M. T. Lozano, and J. M. Montesinos, ”The arithmeticity of the figure eight knot orbifolds,” in: Topology’90, Contrib. Res. Semester Low Dimensional Topology, Columbus/OH (USA) 1990, Ohio State Univ. Math. Res. Inst. Publ., 1992, pp. 169–183. · Zbl 0767.57004
[9] J. Hempel, ”The lattice of branched covers over the figure-eight knot,” Topology Appl.,34, No. 2, 183–201 (1990). · Zbl 0689.57002 · doi:10.1016/0166-8641(90)90080-L
[10] S. V. Matveev and A. T. Fomenko, ”Constant energy surfaces of Hamiltonian systems, enumeration of three-dimensional manifolds in increasing order of complexity, and computation of volumes of closed hyperbolic manifolds,” Uspekhi Mat. Nauk,43, No. 1, 5–22 (1988). · Zbl 0671.58008
[11] J. Weeks, Hyperbolic Structures on 3-Manifolds, Ph. D. Thesis, Princeton Univ., Princeton (1985). · Zbl 0571.57001
[12] W. P. Thurston, The Geometry and Topology of Three-Manifolds, Princeton Univ., Princeton (1980) (Lecture Notes in Math.).
[13] R. Meyerhoff and W. D. Neumann, ”An asymptotic formula for the eta invariants of hyperbolic 3-manifolds,” Comment. Math. Helv.,67, 28–46 (1992). · Zbl 0791.57009 · doi:10.1007/BF02566487
[14] D. Rolfsen, Knots and Links, Publish or Perish Inc., Berkeley, Ca. (1976). · Zbl 0339.55004
[15] J. Milnor, ”Hyperbolic geometry: the first 150 years,” Bull. Amer. Math. Soc., V. 6. P. 9–25 (1982). · Zbl 0486.01006 · doi:10.1090/S0273-0979-1982-14958-8
[16] È. B. Vinberg, ”Volumes of non-Euclidean polyhedrons,” Uspekhi Mat. Nauk,48, No. 2, 17–46 (1993). · Zbl 0799.01019
[17] W. D. Neumann and D. Zagier, ”Volumes of hyperbolic three-manifolds,” Topology,24, No. 3, 307–322 (1985). · Zbl 0589.57015 · doi:10.1016/0040-9383(85)90004-7
[18] R. H. Crowell and R. H. Fox, Introduction to Knot Theory, Ma.: Ginn and Co., Boston (1963).
[19] A. Borel, ”Commensurability classes and hyperbolic volumes,” Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4),8, 1–33 (1991). · Zbl 0473.57003
[20] A. W. Reid, ”Arithmeticity of knot complements,” J. London Math. Soc. (2),43, No. 1, 171–184 (1991). · Zbl 0847.57013 · doi:10.1112/jlms/s2-43.1.171
[21] R. Riley, ”An elliptical path from parabolic representations to hyperbolic structures,” Lecture Notes in Math.,722, 99–133 (1979). · Zbl 0411.57010 · doi:10.1007/BFb0063194
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.