×

Sur les actions affines des groupes discrets. (On affine actions of discrete groups.). (French) Zbl 0865.57038

Summary: One would hope that, for lattices in \(\text{SL}(n,{\mathbb R})\), \(n \geq 3\), differentiable, volume preserving actions on compact manifolds might be “classifiable”. However, we are far from realizing this goal, and so many authors have recently been considering actions of lattices in \(\text{SL}(n,{\mathbb R})\) on manifolds of relatively low dimension, precisely, of dimension \(\leq n\), and which, in addition, satisfy some extra dynamical or geometrical conditions. It has been shown, for example, that there is essentially no new action, other than the standard one of \(\text{SL}(n,{\mathbb Z})\) on the \(n\)-torus. Here we generalize this fact to connection preserving actions of lattices in \(\text{SL}(n,{\mathbb R})\) on manifolds of dimension \(n+1\).

MSC:

57S20 Noncompact Lie groups of transformations
53C05 Connections (general theory)
37-XX Dynamical systems and ergodic theory
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML

References:

[1] [BL] , , Sur les difféomorphismes d’Anosov affines à feuilletages stable et instable différentiables, Invent. Math., 111 (1993), 285-308. · Zbl 0777.58029
[2] [Car] , Autour de la conjecture de L. Markus sur les variétés affines, Invent. Math., 95 (1989), 615-628. · Zbl 0682.53051
[3] [K2] , Sur trois notes de Stieltjes relatives aux séries de Dirichlet. Numéro spécial “100 ans après Stieltjes” des Annales de la Faculté des Sciences de Toulouse, (1996 · Zbl 0786.57016
[4] [Fer2] , Actions of discrete linear groups and Zimmer’s conjecture, J. Diff. Geom., 42 (1995), 554-576. · Zbl 0858.22011
[5] [Fri] , Closed similarity manifolds, Comment. Math. Helv., 55 (1988), 555-565. · Zbl 0455.57005
[6] [Goe] , Connection preserving actions of connected and discrete Lie groups, J. Diff. Geom., 40 (1994), 595-620. · Zbl 0846.57030
[7] [God] , Feuilletages, Études géométriques, Birkhäuser, 1991. · Zbl 0724.58002
[8] [Gro] , Rigid transformation groups, Géometrie différentielle, D. Bernard et Choquet-Bruhat. éd., Travaux en cours 33, Hermann, Paris, 1988. · Zbl 0652.53023
[9] [Kob] , Transformation groups in differential geometry, Springer-Verlag, 1972. · Zbl 0246.53031
[10] [Lew] , The algebraic hull of a measurable cocycle, preprint.
[11] [Pes] , Characteristic Lyapunov exponents and smooth ergodic theory, Uspekhi Mat. Nauk., 32, 4 (1997), 55-114; english transl. Russian Math. Surveys 32, 4 (1977), 55-112. · Zbl 0383.58011
[12] [P-R] , , Cartan subgroups and lattices in semisimple groups, Ann. Math., 96 (1972), 296-317. · Zbl 0245.22013
[13] [Sol] , On foliations of Rn+1 by minimal hypersurfaces, Comment. Math. Helvetici, 61 (1986), 67-83. · Zbl 0601.53025
[14] [Thu] , The geometry and topology of 3-manifolds, Lecture notes, Princeton University, 1978.
[15] [Zeg1] , Feuilletages géodésiques appliqués, Math. Annalen, 298 (1994), 729-759. · Zbl 0794.53020
[16] [31] and , · Zbl 0919.53011
[17] [Zeg3] , Le groupe affine d’une variété riemannienne compacte, Comm. Ana. Geom., 5 (1997), 123-135. · Zbl 0912.53025
[18] [Zim1] , On connection-preserving actions of discrete linear groups, Erg. Th. Dynam. Systems, 6 (1986), 639-644. · Zbl 0623.22007
[19] [Zim2] , Ergodic theory and semisimple Lie groups, Birkhäuser, Boston, 1984. · Zbl 0571.58015
[20] [Zim3] , Lattices in semisimple groups and invariant geometric structures on compact manifolds, Discrete Groups in Geometry and Analysis, R. Howe, ed., Birkhäuser, Boston, 1987, 152-210. · Zbl 0663.22008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.