×

On nonparametric regression for iid observations in a general setting. (English) Zbl 0865.62025

Summary: We consider the problem of sharp-optimal estimation of a response function \(f(x)\) in a random design nonparametric regression under a general model where a pair of observations \((Y,X)\) has a joint density \(p(y,x)=p(y|f(x))\pi(x)\). We wish to estimate the response function with optimal minimax mean integrated squared error convergence as the sample size tends to \(\infty\). Traditional regularity assumptions on the conditional density \(p(y|\theta)\) assumed for parameter \(\theta\) estimation are sufficient for sharp-optimal nonparametric risk convergence as well as for the existence of the best constant and rate of risk convergence. This best constant is a nonparametric analog of Fisher information. Many examples are sketched including location and scale families, censored data, mixture models and some well-known applied examples. A sequential approach and some aspects of experimental design are considered as well.

MSC:

62G07 Density estimation
62G20 Asymptotic properties of nonparametric inference
62K05 Optimal statistical designs
62L12 Sequential estimation
Full Text: DOI

References:

[1] ADAMS, R. A. 1975. Sobolev Spaces. Academic Press, New York. Z. · Zbl 0314.46030
[2] BARY, N. K. 1964. A Treatise on Trigonometric Series. Pergamon, Oxford. Z. · Zbl 0129.28002
[3] BICKEL, P. J., KLAASSEN, C. A. J., RITOV, Y. and WELLNER, J. A. 1993. Efficient and Adaptive Estimation for Semiparametric Models. Johns Hopkins Univ. Press. Z. Z. · Zbl 0786.62001
[4] BOROVKOV, A. A. 1984. Mathematical Statistics in Russian. Nauka, Moscow. Z.
[5] DEMPSTER, A. P., LAIRD, N. M. and RUBIN, D. B. 1977. Maximum likelihood for incomplete data via the EM algorithm. J. Roy. Statist. Soc. Ser. B 39 1 22. Z. JSTOR: · Zbl 0364.62022
[6] DONOHO, D. L., LIU, R. C. and MACGIBBON, B. 1990. Minimax risk for hy perrectangles, and implications. Ann. Statist. 18 1416 1437. Z. · Zbl 0705.62018 · doi:10.1214/aos/1176347758
[7] EFROMOVICH, S. 1985. Nonparametric estimation of a density with unknown smoothness. Theory Probab. Appl. 30 557 568. Z. · Zbl 0593.62034 · doi:10.1137/1130067
[8] EFROMOVICH, S. 1986. The adaptive algorithm of nonparametric regression. In Abstracts of Second IFAC Sy mposium Stochastic Control 2 112 114. Vilnius Univ. Press. Z.
[9] EFROMOVICH, S. 1989. On sequential nonparametric estimation of a density. Theory Probab. Appl. 34 228 239. Z. · Zbl 0716.62077 · doi:10.1137/1134019
[10] EFROMOVICH, S. 1992. On nonparametric regression for iid observations in general setting. Technical report, Dept. Mathematics and Statistics, Univ. New Mexico.
[11] EFROMOVICH, A. and PINSKER, M. S. 1996. Sharp-optimal and adaptive estimation for heteroscedastic nonparametric regression. Statist. Sinica 6. To appear. Z. · Zbl 0857.62037
[12] EFROMOVICH, S. and THOMAS, E. 1996. Applications of nonparametric binary regression to evaluate the sensitivity of explosives. Technometrics 38 50 58. Z. · Zbl 0900.62536 · doi:10.2307/1268902
[13] EUBANK, R. L. 1988. Spline Smoothing and Nonparametric Regression. Dekker, New York. Z. · Zbl 0702.62036
[14] FAN, J. 1993. Local linear regression smoothers and their minimax efficiency. Ann. Statist. 21 196 216. Z. · Zbl 0773.62029 · doi:10.1214/aos/1176349022
[15] GOLUBEV, G. K. 1991. LAN in problems of nonparametric estimation of functions and lower bounds for quadratic risks. Theory Probab. Appl. 36 152 157. Z. · Zbl 0738.62043 · doi:10.1137/1136014
[16] GOLUBEV, G. K. and NUSSBAUM, M. 1990. A risk bound in Sobolev class regression. Ann. Statist. 18 758 778. Z. · Zbl 0713.62047 · doi:10.1214/aos/1176347624
[17] GRENANDER, U. and SZEGO, G. 1958. Toeplitz Forms and Their Applications. Univ. California \" Press. Z.
[18] HARDLE, W. 1990. Applied Nonparametric Regression. Cambridge Univ. Press. \" Z.
[19] IBRAGIMOV, I. A. and KHASMINSKII, R. Z. 1981. Statistical Estimation: Asy mptotic Theory. Springer, New York. Z.
[20] LEHMANN, E. L. 1983. Theory of Point Estimation. Wadsworth and Brooks Cole, Pacific Grove, CA. Z. · Zbl 0522.62020
[21] MULLER, H.-G. 1988. Nonparametric Regression Analy sis of Longitudinal Data. Springer, New Ÿork.Z.
[22] NUSSBAUM, M. 1985. Spline smoothing in regression models and asy mptotic efficiency in L. 2 Ann. Statist. 13 984 997. Z. · Zbl 0596.62052 · doi:10.1214/aos/1176349651
[23] PINSKER, M. S. 1980. Optimal filtration of functions from L in Gaussian noise. Problems 2 Inform. Transmission 16 52 68. Z. · Zbl 0452.94003
[24] SPECKMAN, P. 1985. Spline smoothing and optimal rates of convergence in nonparametric regression models. Ann. Statist. 13 970 983. Z. · Zbl 0585.62074 · doi:10.1214/aos/1176349650
[25] WAHBA, G. 1990. Spline Models for Observational Data. SIAM, Philadelphia. · Zbl 0813.62001
[26] ALBUQUERQUE, NEW MEXICO 87131 E-MAIL: efrom@math.unm.edu
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.