×

zbMATH — the first resource for mathematics

Interior point methods of mathematical programming. (English) Zbl 0866.00024
Applied Optimization. 5. Dordrecht: Kluwer Academic Publishers. xxi, 528 p. (1996).

Show indexed articles as search result.

The articles of this volume will be reviewed individually.
Indexed articles:
Jansen, Benjamin; Roos, Cornelis; Terlaky, Tamás, Introduction to the theory of interior point methods, 3-34 [Zbl 0874.90128]
Tsuchiya, Takashi, Affine scaling algorithm, 35-82 [Zbl 0874.90132]
Jansen, Benjamin; Roos, Cornelis; Terlaky, Tamás, Target-following methods for linear programming, 83-124 [Zbl 0874.90129]
Anstreicher, Kurt M., Potential reduction algorithms, 125-158 [Zbl 0876.90066]
Mizuno, Shinji, Infeasible-interior-point algorithms, 159-187 [Zbl 0874.90130]
Andersen, Erling D.; Gondzio, Jacek; Mészáros, Csaba; Xu, Xiaojie, Implementation of interior-point methods for large scale linear programs, 189-252 [Zbl 0874.90127]
Jarre, Florian, Interior-point methods for classes of convex programs, 255-296 [Zbl 0876.90073]
Yoshise, Akiko, Complementarity problems, 297-367 [Zbl 0874.90186]
Ramana, Motakuri V.; Pardalos, Panos M., Semidefinite programming, 369-398 [Zbl 0874.90131]
Shanno, David F.; Breitfeld, Mark G.; Simantiraki, Evangelia M., Implementing barrier methods for nonlinear programming, 399-414 [Zbl 0874.90174]
Mitchell, John E., Interior point methods for combinatorial optimization, 417-466 [Zbl 0874.90163]
Pardalos, Panos M.; Resende, Mauricio G. C., Interior point methods for global optimization, 467-500 [Zbl 0874.90172]
Vannelli, Anthony; Kennings, Andrew; Chin, Paulina, Interior point approaches for the VLSI placement problem, 501-528 [Zbl 0874.90196]

MSC:
00B15 Collections of articles of miscellaneous specific interest
90-06 Proceedings, conferences, collections, etc. pertaining to operations research and mathematical programming
90Cxx Mathematical programming
PDF BibTeX XML Cite