×

zbMATH — the first resource for mathematics

Multipeak solutions for a semilinear Neumann problem. (English) Zbl 0866.35039
The paper is concerned with the semilinear Neumann problem: \[ \varepsilon^2 \Delta u-u+f(u) =0,\;u>0, \text{ in } \Omega,\quad {\partial u\over \partial\nu} =0\text{ on } \partial \Omega, \] where \(\Omega\) is a bounded domain in \(\mathbb{R}^N\), \(\nu\) is the outer normal to \(\partial\Omega\) and \(\varepsilon\) is a positive constant. In addition to suitable conditions on \(f(t)\), typically satisfied by the function \(f(t)= t^p-at^q\) if \(a\geq 0\) and \(1<q<p <(N+2)/(N-2)\), the domain \(\Omega\) is assumed to satisfy the condition that there exist \(k\) disjoint patches \(\Lambda_1\), \(\Lambda_2, \dots, \Lambda_k\) on \(\partial \Omega\) such that \(\max_{P\in \Lambda_i} H(P)> \max_{P\in\partial \Lambda_i} H(P)\), where \(H(P)\) denotes the mean curvature of \(\partial \Omega\) at \(P\). Under these conditions, the author proves the existence of a classical solution \(u_\varepsilon\) which has exactly \(k\) local maxima, precisely one on each \(\Lambda_i (i=1,2, \dots,k)\), and then analyses the asymptotic behavior as \(\varepsilon \downarrow 0\).

MSC:
35J65 Nonlinear boundary value problems for linear elliptic equations
35J20 Variational methods for second-order elliptic equations
35B25 Singular perturbations in context of PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] S. Alama and Y. Y. Li, On “multibump” bound states for certain semilinear elliptic equations , Indiana Univ. Math. J. 41 (1992), no. 4, 983-1026. · Zbl 0796.35043 · doi:10.1512/iumj.1992.41.41052
[2] H. Berestycki and P. L. Lions, Nonlinear scalar field equations. I. Existence of a ground state , Arch. Rational Mech. Anal. 82 (1983), no. 4, 313-345. · Zbl 0533.35029
[3] H. Brezis and T. Kato, Remarks on the Schrödinger operator with singular complex potentials , J. Math. Pures Appl. (9) 58 (1979), no. 2, 137-151. · Zbl 0408.35025
[4] C.-C. Chen and C.-S. Lin, Uniqueness of the ground state solutions of \(\Delta u+f(u)=0\) in \(\mathbf R^ n,\;n\geq 3\) , Comm. Partial Differential Equations 16 (1991), no. 8-9, 1549-1572. · Zbl 0753.35034 · doi:10.1080/03605309108820811
[5] V. Coti Zelati and P. H. Rabinowitz, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials , J. Amer. Math. Soc. 4 (1991), no. 4, 693-727. JSTOR: · Zbl 0744.34045 · doi:10.2307/2939286 · links.jstor.org
[6] V. Coti Zelati and P. H. Rabinowitz, Homoclinic type solutions for a semilinear elliptic PDE on \(\mathbf R^ n\) , Comm. Pure Appl. Math. 45 (1992), no. 10, 1217-1269. · Zbl 0785.35029 · doi:10.1002/cpa.3160451002
[7] B. Gidas, W.-M. Ni, and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in \(\mathbf R\spn\) , Mathematical analysis and applications, Part A, Adv. in Math. Suppl. Stud., vol. 7, Academic Press, New York, 1981, pp. 369-402. · Zbl 0469.35052
[8] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order , 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. · Zbl 0562.35001
[9] C. Gui, Existence of multibump solutions for nonlinear Schrödinger equations via variational method , to appear in Comm. Partial Differential Equations. · Zbl 0857.35116 · doi:10.1080/03605309608821208
[10] M. K. Kwong and L. Zhang, Uniqueness of the positive solution of \(\Delta u+f(u)=0\) in an annulus , Differential Integral Equations 4 (1991), no. 3, 583-599. · Zbl 0724.34023
[11] Y. Y. Li, On \(-\Delta u=K(x)u^ 5\) in \(\mathbf R^ 3\) , Comm. Pure Appl. Math. 46 (1993), no. 3, 303-340. · Zbl 0799.35068 · doi:10.1002/cpa.3160460302
[12] Y. Y. Li, Prescribing scalar curvature on \(S^ 3,\;S^ 4\) and related problems , J. Funct. Anal. 118 (1993), no. 1, 43-118. · Zbl 0790.53040 · doi:10.1006/jfan.1993.1138
[13] Y. Y. Li, Prescribing scalar curvature on \(S^ n\) and related problems. I , J. Differential Equations 120 (1995), no. 2, 319-410. · Zbl 0827.53039 · doi:10.1006/jdeq.1995.1115
[14] C.-S. Lin, W.-M. Ni, and I. Takagi, Large amplitude stationary solutions to a chemotaxis system , J. Differential Equations 72 (1988), no. 1, 1-27. · Zbl 0676.35030 · doi:10.1016/0022-0396(88)90147-7
[15] 1 P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. I , Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 2, 109-145. · Zbl 0541.49009 · numdam:AIHPC_1984__1_2_109_0 · eudml:78069
[16] 2 P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. II , Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 4, 223-283. · Zbl 0704.49004 · numdam:AIHPC_1984__1_4_223_0 · eudml:78074
[17] W.-M. Ni and I. Takagi, On the shape of least-energy solutions to a semilinear Neumann problem , Comm. Pure Appl. Math. 44 (1991), no. 7, 819-851. · Zbl 0754.35042 · doi:10.1002/cpa.3160440705
[18] W.-M. Ni and I. Takagi, Locating the peaks of least-energy solutions to a semilinear Neumann problem , Duke Math. J. 70 (1993), no. 2, 247-281. · Zbl 0796.35056 · doi:10.1215/S0012-7094-93-07004-4
[19] E. Sere, Existence of infinitely many homoclinic orbits in Hamiltonian systems , Math. Z. 209 (1992), no. 1, 27-42. · Zbl 0725.58017 · doi:10.1007/BF02570817 · eudml:174347
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.